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Abstract

An analysis of historical cost trends of energy technologies shows that the decades-
long increase in the deployment of renewable energy technologies has consistently 
coincided with steep declines in their costs. For example, the cost of solar photovoltaics 
has declined by three orders of magnitude over the last 50 years. Similar trends are to 
be found with wind, energy storage, and electrolysers (hydrogen-based energy). Such 
declines are set to continue and will take several of these renewable technologies 
well below the cost base for current fossil fuel power generation. Most major climate 
mitigation models produced for the IPCC and the International Energy Agency have 
continually underestimated such trends despite these trends being quite consistent and 
predictable. By incorporating such trends into a simple, transparent energy system model 
we produce new climate mitigation scenarios that provide a contrasting perspective 
to those of the standard models. These new scenarios provide an opportunity to 
reassess the common narrative that a Paris-compliant emissions pathway will be 
expensive, will require reduced energy reliability or economic growth, and will need to 
rely on technologies that are currently expensive or unproven as scale. This research 
provides encouraging evidence for governments that are looking for greater ambition 
on decarbonising their economies while providing economic growth opportunities and 
affordable energy.

This report should be referenced as:

Ives, M.C., Righetti, L., Schiele, J., De Meyer, K., Hubble-Rose, L., Teng, F., Kruitwagen, 
L., Tillmann-Morris, L., Wang, T., Way, R. & Hepburn, C. 2021. A new perspective on 
decarbonising the global energy system. Oxford: Smith School of Enterprise and the 
Environment, University of Oxford. Report No. 21-04.
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A new perspective on 
decarbonising the global  
energy system

 ● Summary for Policymakers

A rigorous analysis of the historical cost trends of energy technologies shows that 
the decades-long increase in the deployment of key renewable energy and storage 
technologies (e.g., solar, wind, batteries, and hydrogen) has gone hand-in-hand with 
consistent steep declines in their costs. For example, the cost of solar PV has declined 
by three orders of magnitude (more than 1000-fold decrease) as it has become more 
widely deployed over the last 50 years – declining so much that the International Energy 
Agency recently declared solar PV in certain regions “the cheapest source of electricity 
in history” (IEA, 2020). Such cost reductions are the consequence of experience gained 
in design, manufacture, finance, installation, and maintenance – and the overall pattern of 
development is hence known as the ‘experience curve’. 

In contrast, non-renewable energy technologies have seen no significant deployment-
related cost declines over the last 50 years. The cost of electricity from coal and gas 
has largely remained steady, fluctuating by less than an order of magnitude. The average 
cost of nuclear electricity has even increased over this same period, partly in response to 
safety concerns. 

These long-term technology cost trends appear to be consistent and predictable 
(Farmer & Lafond, 2016; McNerney et al., 2011). Alongside advances in the technologies 
themselves, we have seen advances in our understanding of how technological change 
unfolds in the economy more broadly and of the characteristics that fast-progressing 
technologies have in common with each other (Wilson et al., 2020). Several new methods 
that are statistically validated and firmly grounded in data have been developed for 
forecasting technological progress (Nagy et al., 2013; Way et al., 2019).

Incorporating technology cost trends into a simple, transparent energy system 
model has produced new climate mitigation scenarios that starkly contrast to those 
currently produced for the IPCC and the International Energy Agency (IEA). It may 
come as a surprise that in most major climate mitigation models, such as the IPCC’s 
Integrated Assessment Models (IAMs), the costs of energy technologies are not handled 
very transparently. They assume unsubstantiated limits to cost declines and often contain 
out-of-date data (Jaxa-Rozen & Trutnevyte, 2021; Krey et al., 2019). We use an alternative 
approach to explore the implications of these discrepancies and have found an exciting 
new decarbonisation scenario we have named the Decisive Transition in recognition of 
the commitment to a clean energy system that this scenario represents.
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 ● Our response

Our energy systems model is built on observed 
trends in the relationship between the rate of 
deployment and the cost of energy technologies 
such as solar, wind, batteries and hydrogen.

Average global solar photovoltaic costs

(Based on Way et al. 2020) 

Global final energy mix

Decisive Transition scenario

Our Decisive Transition scenario: 

• 2% p.a. useful energy growth  
(>3.4% p.a. economic growth)

• No expensive large-scale CCS required

• Rapid phase-out of all fossil fuels 

• Large efficiency gains from electrification

• Electricity prices are very likely to fall

• Emissions are more aligned with Paris goals

A novel approach to energy systems modelling – 
accounting transparently for the real-world,  
historical cost trends of renewable energy 
technologies – indicates that the decarbonisation  
of the global energy system:

• Is likely to be cheaper than commonly assumed

• May not require any declines in economic growth

• Can be achieved without large investments in 
unproven and potentially expensive technologies

 ● The problem

Existing energy system models have consistently 
underestimated the cost reductions and growth 
potential of key renewable and energy storage 
technologies.

Average global solar photovoltaic costs

(IEA World Energy Outlook 2001-2020, Nemet 2006, 

and IRENA 2020)

Global final energy mix

Sustainable Development Scenario

The IEA’s Sustainable Development Scenario  
(IEA World Energy Outlook 2019):

• 3.4% p.a. economic growth

• Requires expensive large-scale carbon 
capture & storage (CCS)

• Keeps coal through CCS retrofits

• Some electrification benefits

• Electricity prices unlikely to fall

• Emissions are less aligned with Paris goals

A new perspective 
on decarbonising 
the global energy 
system
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This scenario is created by selecting deployment rates for new energy technologies, 
based on their historical trends, and allowing such trends to continue for around a decade 
before tapering off. Technology costs are then simulated hundreds of thousands of times 
to generate probabilistic forecasts based on the methodology published by Farmer & 
Lafond (2016). These probabilistic cost forecasts are generated for the various key 
technologies to model a lower cost evolution of the energy system that has yet to be 
explored by the major mitigation models of the IPCC and IEA.

This new perspective suggests a reassessment is due regarding the potential cost 
and pace of the global energy system’s transition. At present, policymakers usually 
assume that the transition of the energy system to a Paris-compliant emissions pathway 
will be expensive; that it will require a net reduction in the provision of energy services 
or economic growth; and that it will rely critically on technologies that are currently 
expensive, unproven, or potentially controversial – such as carbon capture and storage 
(CCS), second-generation biofuels, and new nuclear energy designs (e.g., small modular 
reactors). 

In this report, we present two contrasting scenarios that illustrate how properly 
accounting for technological cost trends can challenge common perceptions 
regarding the costs and benefits of a Decisive Transition to clean energy 
technologies. The modelling presented in this report contrasts two very different 
scenarios: a Stalled Transition, in which total demand for energy services continues to 
grow at its historical average of 2% per year, but with the ratios of the different energy 
technologies frozen at their current values. This scenario provides a useful ‘worst-
case’ baseline and a counterfactual for estimating relative costs. The second scenario 
is a Decisive Transition in which current exponential growth rates in clean energy 
technologies continue for the next decade, then gradually relax back to the low system-
wide rate. Here we see that within 25 years, fossil fuels are displaced from the energy 
sector, with all essential liquid fuel use replaced by “green” hydrogen-based fuels. Solar 
and wind provide most of the energy; transport and heat are mostly electrified; and 
reliable electricity is maintained using batteries and chemical-based energy storage 
technologies. To provide a like-for-like comparison with the Stalled Transition, useful 
energy also grows at 2% per year, a rate much higher than in other deep decarbonisation 
scenarios. 

Our Decisive Transition achieves almost all the reductions in greenhouse gas 
emissions necessary to match the most ambitious IPCC scenarios. Figure 1 presents 
the global warming associated with the Stalled (orange) and Decisive Transition (purple) 
scenarios compared to three key IPCC warming scenarios. Our Stalled Transition 
scenario is most closely aligned with what is regarded as the ‘worst-case’ IPCC scenario 
(SSP5 RCP8.5). The Decisive Transition is most comparable to the SSP1 RCP2.6 high 
mitigation ambition “Taking the Green Road” scenario. This is a remarkable outcome 
because, in contrast to the high ambition IPPC scenarios (SSP1 RCP1.9 and SSP1 
RCP2.6), the Decisive Transition scenario achieves this result without reducing non-
energy-based emissions; without any significant deployment of nuclear, carbon capture 
and storage, or energy-saving technologies; and without requiring a reduction in energy 
demand or economic growth. It is merely a result of extending the current high growth 
rates in deployment of clean energy technologies for another decade. 
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• Figure 1: Comparisons of Temperature Anomalies from the estimated global emissions 

of two PTEC scenarios Stalled and Decisive Transition and three IPCC scenarios SSP5-

RCP8.5 baseline, SSP1-RCP1.9 and SSP1-RCP2.6.

The Decisive Transition is significantly cheaper than the Stalled Transition. The 
modelling show-cased in this report suggests that a clean energy system could be trillions 
of dollars less expensive to engineer than continuing with the current system based on 
fossil fuels (Way et al., 2020). This is even without factoring in pollution and associated 
morbidity and mortality (Vohra et al., 2021), or the multitude of additional physical climate 
costs likely to result from higher levels of global warming (Arnell et al., 2019).

In the short- and medium-term, situations may arise where renewables cannot 
cheaply meet the energy demands of certain regions. In these situations, arguments 
might be made for investment in interim fossil-fuel-based solutions, such as natural 
gas. However, it should be kept in mind that such investments may not contribute to the 
final transition and can instead lead to carbon lock-in and create additional transition 
risk. Foreign aid should be aligned to enable developing states to instead “leapfrog” 
to electrification and new clean electricity generation, load balancing, and storage 
technologies.
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Unlike most other ambitious scenarios, the Decisive Transition scenario does not 
rely on underdeveloped technologies, such as carbon capture and storage (CCS) and 
Bioenergy with CCS (BECCS). This raises questions about whether we should continue 
channelling investment towards technologies like CCS and nuclear fusion for energy 
provision. Neither may mix particularly well with renewables and will detract investment 
away from driving down costs in renewables and storage technologies. 

It is still vital that we counter institutional and social barriers to a Decisive Transition, 
that financial stability is maintained, that gender and social equality is maintained or 
improved, and that job losses in the fossil fuel industries are addressed. The IEA has 
shown the potential for renewables to provide far more jobs than other energy-related 
investments (IEA, 2020), but these jobs may not be created in the areas where coal mines 
are being closed. Industrial strategies will therefore need to be developed to counter 
such transition risks. Efforts to maintain or improve gender and social equality should 
be prioritised now to avoid perpetuating existing gender inequalities (Pearl-Martinez & 
Stephens, 2016). Social equity concerns also go well beyond the implications for coal 
miners and include communities tied to coal-fired power stations and communities linked 
to oil extraction and refinement (Carley & Konisky, 2020). Countries with high reliance 
on coal-fired energy will also require international support in establishing grid balancing, 
storage, and efficient power markets to enable higher renewable penetration. 

Transition risks are real and likely, given how rapidly technological trends are moving, 
but it must be remembered that, unlike physical climate risks, stranded assets are 
only a one-off cost. If we do not end climate change, the more frequent and damaging 
extreme hurricanes, floods, droughts, and wildfires are likely to cause far greater 
economic costs that will be constant, long-term, and potentially permanent. Our estimates 
show the costs of climate damages up to the end of the century from a Stalled Transition 
are at least ten times greater than any transition risk associated with the Decisive 
Transition. 

In summary, the Decisive Transition scenario indicates that the decarbonisation of the 
global energy system:

• Is likely to be cheaper than commonly assumed.

• May not require any declines in economic growth.

• Can be achieved without large investments in unproven and potentially expensive 
technologies.

• Has the potential to save hundreds of trillions of dollars in physical climate damages.

This new perspective also suggests that renewable technologies like solar and wind 
can provide a steady and secure energy supply, rebutting common beliefs regarding 
the intermittency problems with renewables. There is a belief that the large-scale 
deployment of renewables in the global energy system will lead to energy supply failures 
and high grid integration costs in the future. Our model challenges these perceptions by 
coupling solar and wind deployment with the deployment of sufficient short-term storage 
(e.g., batteries) and long-term storage (e.g., hydrogen and ammonia) technologies to 
ensure high levels of energy security. 
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This feature allows these storage technologies to also “ride” down experience curves of 
their own, reaching far higher deployment levels than are commonly anticipated. In doing 
so, the model demonstrates that it is economically feasible to create a carbon-neutral 
energy system which:

• Deals with the intermittency problem of renewables through the use of energy 
storage technologies.

• Allows key storage technologies, such as batteries and electrolysers, to continue 
their cost decline trends.

• Provides for high levels of energy security while enabling large-scale integration of 
renewables.

This research offers the opportunity to revisit thinking around the most financially 
effective speed to transition to a Paris-compliant world. We have found strong 
evidence to suggest renewable and energy storage technologies will continue their 
current decreasing cost trends. Most, if not all, of the major climate mitigation models 
informing decision makers, have continually underestimated these trends. For instance, 
most major climate mitigation models have minimal electric vehicle take-up in the next 
few decades. However, if electric vehicle costs continue on current trends, they could be 
cheaper to buy and run than internal combustion vehicles in less than a decade (Sharpe 
& Lenton, 2021). Somewhat counter-intuitively, this increased electricity demand from 
electric vehicles might actually drive down electricity costs (Lafond et al., 2020). This is 
due to the positive feedback dynamics that our model is designed to capture and that 
standard economic models do not. Increased adoption of electric vehicles will lead to 
more demand for electricity. If this increased demand is met with the deployment of more 
renewables, renewables will get cheaper, electricity generation will get cheaper, electric 
vehicles will become cheaper and more desirable... and the feedback repeats – provided 
that this new electricity demand is met with more deployment of renewables.

This research can act as a catalyst for governments to reassess their NDCs at COP26. 
This is especially true for nations looking to enact a “green recovery” programme or 
expects significant future energy demand growth and, therefore, are already considering 
new investment in energy infrastructure (Hepburn et al., 2020). We need a better 
understanding among national policymakers on what drives these renewable cost 
reduction trends and how a Paris-style collaboration on investment in renewables and 
storage for national targets could benefit all countries. COP26 offers a ripe opportunity 
for a Glasgow Accord on action. Renewables are clear “runners” in the technology race, 
and early investment will allow countries to capture more of the prosperity this green 
industrial revolution offers (Farmer et al., 2019). 

After the turmoil and horrible cost of the Covid-19 pandemic, we cannot afford 
business-as-usual – it is too risky and too expensive. When coupled with storage, 
expanded transmission networks, and smart grids, renewable energy potentially provides 
a solution to the energy trilemma that a fossil fuel-based system simply cannot replicate – 
an energy system that is affordable, secure, and sustainable. 
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Introduction

In this report, we propose a novel approach to energy systems modelling and examine the 
new perspectives such an approach offers on the assumed cost of climate mitigation. 

We focus on the experience curves of technologies – historical trends in the relationship 
between the rate of deployment and the cost of specific technologies – and what they 
can tell us about the cost and feasibility of the global energy system’s transition to net-
zero emissions. 

A rigorous analysis of the historical cost trends of energy technologies shows that the 
decades-long increase in the deployment of renewable energy technologies (e.g., solar, 
wind, batteries, and hydrogen) has gone hand-in-hand with steep declines in their cost. 
For example, the cost of solar PV has declined by three orders of magnitude over the 
last 50 years as it has become more widely deployed. These cost reductions are the 
consequence of experience gained in production, finance, installation, and maintenance – 
hence the term ‘experience curve’. By contrast, non-renewable energy technologies have 
seen no significant deployment-related cost declines over the last 50 years. The cost 
of electricity from coal and gas has remained mostly steady, fluctuating by less than an 
order of magnitude. The average cost of nuclear electricity has even increased over this 
same period. 

Based on these historical cost trends, we developed a novel forecasting method in which 
renewable technologies’ costs stochastically relate to their deployment rate. We estimate 
the parameters of this relationship using historical data. This probabilistic cost forecasting 
method is used to construct the Probabilistic Technological Change (PTEC) global energy 
system model. PTEC comprises four energy-use sectors (electricity, industry, transport, 
and buildings) and includes 13 different energy technologies: non-renewable energy 
sources like oil, coal, gas, and nuclear; renewable technologies like solar and wind; and 
energy storage technologies like batteries for short-term storage and hydrogen and 
ammonia for long-term storage.

The observed historical correlation between deployment rates and cost reductions 
does not imply causation and is, in reality, a two-way process: increasing experience 
with a technology drives down its cost, which then causes further deployment. By using 
deployment as the driver of cost in our model we are produce contrasting future energy 
transition scenarios based on actual trends. These scenarios are created by selecting 
different deployment rates for the various energy technologies in the model. Technology 
costs are then simulated hundreds of thousands of times using the probabilistic 
forecasting method. A key result of interest is how the resulting cost distributions of 
specific energy technologies and total energy system costs evolve.



14

In this report, we will present the results for two very different transition scenarios: a 
Stalled Transition, in which total demand for energy services continues to grow at its 
historical average of 2% per year, but with the ratios of the different energy technologies 
frozen at their current values. This scenario is not necessarily realistic since it is hard to 
imagine solar PV or wind’s recent growth to stop this abruptly. Still, it provides a useful 
‘worst-case’ scenario to act as a baseline and a counterfactual to examine relative costs. 
The second scenario is a Decisive Transition. Here useful energy also grows by 2% 
per year overall, as with the stalled transition. However, in this scenario resolute policy 
and investment action maintain the deployment of renewable technologies near their 
current rates for another decade before they relax to the system-wide growth rate of 2% 
per year. Solar and wind provide most of the energy, transport is mostly electrified, and 
reliable electricity is maintained using energy storage. 

 ● Changing the ‘policy mood music’

As we will demonstrate, the contrast between these two scenarios offers a new 
perspective to decision-makers about the benefits of pushing decisively for a transition 
towards renewable energy technologies. 

This new perspective creates an opportunity to shift the ‘policy mood music’ around the 
global energy system’s transition. At present, the ‘mood music’ policymakers often hear 
is that the transition of the energy system to a Paris-compliant emissions pathway will 
be expensive; it will require a net reduction in the provision of energy services; and it 
will rely critically on technologies that are currently expensive, unproven, or potentially 
controversial – such as carbon capture and storage (CCS), second-generation biofuels, 
and new nuclear energy designs. 
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Additionally, it is commonly assumed that, since renewable energy technologies like solar 
and wind only provide energy intermittently, they cannot provide energy security. Thus, 
some believe that the large-scale deployment of renewables in the global energy system 
will lead to high grid integration costs in the future. The PTEC model challenges these 
perceptions by coupling solar and wind deployment to the deployment of both short-term 
storage (i.e., batteries) and long-term storage (i.e., hydrogen and ammonia) technologies. 
This feature allows these storage technologies to simultaneously “ride” experience curves 
of their own, to far higher deployment levels than are commonly assumed possible. In 
doing so, the model demonstrates that it is economically feasible to create a carbon-
neutral energy system which deals with the intermittency problem of renewables, provides 
high levels of energy security both in terms of meeting peak demand and reducing the 
need for importing fuels, and can accommodates the cost of large-scale integration of 
renewables into the energy system.

As with any model, PTEC has its limitations (which we discuss later in the report). 
However, these limitations do not undermine the model’s ability to offer a glimpse of a 
broader range of possible energy futures and climate mitigation solutions than those 
captured in the current energy and climate mitigation models used to inform policymaking. 

We do not claim that the results presented for the decisive transition scenario are set 
in stone. What the results show, however, is that if a model transparently accounts for 
the real-world, historical cost trends of renewable technologies, then a much broader 
range of possible futures becomes visible. It may come as a surprise that in most 
Integrated Assessment Models (IAMs), the costs of energy technologies are not handled 
transparently. They assume unsubstantiated limits to cost declines and are usually using 
data that is years out-of-date. This is important because these models currently set the 
policy mood music around the overall cost and feasibility of climate mitigation efforts. The 
contrast between the inputs and results of the different models are sufficient to suggest 
that reassessing the policies and investment decisions currently pursued by decision-
makers is a good idea. At the very least, the future envisaged by the decisive transition 
scenario shows that resolute action through investment and deployment could deliver big 
wins in both the future cost of energy and the world’s ability to tackle climate change.

 ● How to read this report – a roadmap

The remaining sections of the report explain why this research calls for a new perspective 
on the decarbonisation of the global energy system, and how it affects the policy mood 
music. 

Section 1 deals with how information on energy transitions is currently provided to 
decision-makers and how this sets the current policy mood music. What models are 
being used to inform decision-makers on climate mitigation pathways? How are they 
constructed? What was their intended purpose, and how are they used in practice?

Section 2 describes the limitations of these existing climate mitigation models. What 
assumptions and data do they use for assessing mitigation options and their costs? 
What information are they not providing to decision-makers? How do they narrow the 
perspective on possible transition pathways for policymakers?
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Section 3 introduces our alternative perspective: an energy model built around the 
empirically observed correlations between deployment rates and the cost of various 
energy technologies. We discuss how using aggregate technology levels leads to a class 
of models with lower complexity than current energy systems models. This feature offers 
a level of transparency that many models do not provide. 

Section 4 shows the results of using our methodology. We introduce two sample energy 
transition scenarios (the ‘stalled’ and ‘decisive’ transition scenarios) and cover how we 
calibrated them to scenarios used by the IEA and IPCC. We then provide a detailed 
comparison with those major mitigation scenarios on, for example, overall costs of the 
transition, final energy mix, and future emission levels.

Section 5 explains how our model’s limitations might affect the results we present. We 
consider what kind of additional analysis we might need for understanding the full effects 
of a more decisive and therefore faster energy transition. For example, we discuss the 
impacts of a decisive energy transition on institutions, labour markets, financial markets, 
the risk of stranded assets etc.

Finally, in Section 6, we return to how our research can shift the policy mood music away 
from a reliance of far-off expensive solutions and toward existing clean technologies with 
a track record of consistent cost declines and successful deployment.
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Section 1: How models inform 
decision-making on climate 

 ● Understanding the costs and consequences of  
climate change

Decision-makers in government and industry have relied for decades upon the guidance 
provided by various models to provide information on future climate change scenarios 
and how global development might evolve under varying levels of ambition to stop climate 
change (Krey et al., 2019).

The current pandemic has only emphasised the value of using models for decision-
makers in high-stake situations, where non-linear dynamics and large uncertainty are 
evident. The management of the COVID pandemic has also demonstrated how models 
are not just about generating predictions but serve more broadly as a way for scientists 
to inform policymakers about a system’s dynamics and allow them to contrast the 
implications of different strategies. We have seen how even elementary models played 
an invaluable role in illustrating key messages, such as simple SIR models being used 
to demonstrate what “flattening the curve” looks like. It is often not just the results of a 
model that matter — it is the transparency and clarity of the model as a whole.

Yet any trust that the scientific community may have gained in the pandemic is far from 
unconditional. Covid-19 has also highlighted the dangers of misinterpreting models. When 
failing to communicate assumptions and uncertainties, models only add to the uncertainty 
that decision-makers face. This failure can often lead to recommendations being put in 
the wrong context or worse. Initial confusion around “herd immunity” in countries such as 
the UK and Sweden served to highlight this point. 

Some of the factors that made models so critical for Covid-19 also apply to climate 
change. They are both highly complex issues, which will require decision-makers to rely 
heavily on experts and the scientific community. Now more than ever, we believe it is 
crucial that for people to understand better any explicit biases found in models and how 
such models inform decisions.

This section provides some background on how climate change scenarios are 
developed, what are the most used scenarios, and how they inform policymaking. This 
section intends to give the reader a background understanding of some of the major 
organisations and their research, which is key to understanding this report’s focus and 
relevance. 
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How climate mitigation scenarios are developed

Climate mitigation scenarios are developed using a series of connected models, each of 
which is intended to produce an internally consistent representation of some part of the 
full energy-economy-climate system. Such coupled or integrated models often include 
i) a socio-economic model, which makes future projections of human development like 
population growth and economic growth; ii) an energy system model, which provides 
energy services to the modelled economy using various technologies, some of which 
produce greenhouse gas (GHG) emissions; and iii) an earth system model, which 
calculates the impact that GHG emissions might have on the earth’s climate.

Table 1 provides a brief overview of each of these models with a summary of how they 
are used to provide decision-makers with information on climate mitigation pathways. 
Appendix A provides more detail on each of these model types. A scenario typically sets 
initial values for crucial factors; a model then determines how these interact and change. 
Note that each model may be used to evaluate various scenarios. The same scenario can 
produce different results using different models; the same model can produce different 
results running different scenarios. 

This report mostly draws comparisons to the models developed by and for two key 
authorities: the International Energy Agency (IEA) and the Intergovernmental Panel 
on Climate Change (IPCC). These organisations publish a range of climate mitigation 
scenarios using “energy system models” and the generally more complex ‘process-driven’ 
Integrated Assessment Models (IAMs). Further information on these organisations and 
other providers of climate mitigation scenarios is provided in Appendix A.

As shown in Table 1, there are many different types of models that provide decision-
makers with information regarding the consequence of climate change and potential 
mitigation pathways. These span across various disciplines and sectors, including 
physical science, economics, social science, energy systems, biodiversity, and land use. 
To create a more comprehensive assessment of climate change, we can link several 
specific models together in what is known as an Integrated Assessment Models (IAM). 
Such IAMs can vary significantly in their complexity (e.g., depending on how many 
separate models are linked) and the policy questions they are designed to elucidate (see 
Appendix A for more information).

This report focuses specifically on models, including energy system models and ‘process-
driven’ IAMs or policy evaluation models,1 that provide information to decision-makers 
on feasible climate mitigation pathways and scenarios. For convenience, we refer to 
this collection of models as “climate mitigation models” or simply “mitigation models”. 
Mitigation policies are generally applied in the form of a social cost on carbon emissions 
with the climate mitigation models optimising social welfare and reducing emissions in 
response to this price on carbon emissions. Adaptation and vulnerability models are also 
used to inform individuals, groups, and governments’ adjustments to climate impacts.

 

1 The 3rd Assessment Report of the IPCC divides IAMs into two broad categories: policy optimisation 
models (POMs) and policy evaluation models (PEMs) (IPCC, 2001).
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 ● Table 1: Models relevant to providing decision-makers with information 
regarding climate mitigation pathways. Note that the categorisations of 
models we present here are not mutually exclusive, and there are many 
examples of crossovers.2 

Models Examples Applications

Climate 
Models: (ESMs, 
GCMs, EMICs 
and emulators) 

HadCM3, EdGCM, 
GFDL CM2.X, 
ARPEGE-Climat, 
MOM-3, MAGICC, 
FAIR

GENIE, MIROC-lite, 
IGSM

• understanding impact of emissions on the 
climate system

• production of radiative forcing and warming 
pathways

• establishing climate targets 

• understanding physical risks 

• climate attribution 

• inputs to impact models (IAMs)

Energy System 
Models

MARKAL, MESSAGE, 
TIMES, IEA World 
Energy Model, Shell 
World Energy Model, 
PRIMES 

• constructing mitigation pathways in energy 
systems

• energy strategy development for policy

Land Use 
Models

GLOBIOM, GAINS • analyse the competition for land use 
between agriculture, forestry, and 
bioenergy

• land use emissions

‘Simple’ IAMs CETA, DICE, MERGE, 
PAGE, FUND

• assess the costs and benefits of avoiding 
different levels of warming

• calculate the Social Cost of Carbon

‘Complex’ 
or ‘process-
driven’ IAMs

IMAGE, WITCH, 
TIAM, MESSAGE-
GLOBIOM, AIM, 
GCAM, REMIND, 
MAgPIE, C3IAM

• constructing mitigation pathways

• constructing alternative future socio-
economic scenarios

• building the scenarios matrix to explore 
multiple socio-economic and mitigation 
options

• transition risk

Climate Impact, 
Adaptation and 
Vulnerability 
Models (IAVs)

CLIMPACTS, CALVIN 
(Dickinson, 2007a)

There is thus a vast range of modelling approaches that the climate community has 
employed to understand climate change and the cost of policies to mitigate that change. 
The models used are all mathematical but use theoretical underpinning from different 
branches of physical and social science for their calculations. 

2 For example, land use mitigation, modules of IAMs or impact models are likely also to have elements 
of adaptation within them. (Dickinson, 2007).
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As all models are simplifications of the systems they model, they must rely on a 
range of assumptions about how such systems function, and how they might change 
into the future. There is much debate around how key processes are modelled (the 
methodologies), how they are parameterised and sources of data (the inputs), what is, 
or is not included, and how uncertainty is represented. Compounding these sources of 
contention is the fact that the major mitigation models are quite large and generally lack 
transparency around their inner workings (Gambhir et al., 2019). The mitigation models 
used by the IEA and IPCC do have important common elements. These similarities 
include viewing climate change as an inter-temporal optimisation problem and reliance 
on general or partial equilibrium economic models to resolve questions around the cost 
of investing capital in mitigation solutions (Farmer et al., 2015). This common approach is 
also not without its controversy, including an under-representation of non-linear dynamics 
(Farmer et al., 2015), and tendency to focus on unproven solutions such as carbon dioxide 
removal technologies (untested in use, reliance, effectiveness and costs),3 rather than 
renewables, despite the latter’s recent dramatic decline in costs (Gambhir et al., 2019; 
Pietzcker et al., 2017). 

The increasing complexity and size of models have also made them more challenging to 
compare and evaluate, motivating several “model intercomparison projects” (MIPs). Most 
prominently, the Coupled Model Intercomparison Projects (CMIP) (1-3. 5 and current 
CMIP6) efforts to facilitate evaluations and improvements across climate models (GCMs, 
AOGCMs and ESMs) have informed the IPCC Assessment Reports (mostly WGI) (O’Neill 
et al., 2016). 

The range of scenarios modelled

All climate mitigation models are run against an underlying socio-economic scenario – a 
plausible set of assumptions about how our social, economic, and political systems might 
evolve over the coming century. The IEA only model the energy system and calculate 
energy demand based on a consistent set of socio-economic drivers across each of their 
scenarios which include a 3.4% annual global GDP growth and an additional 1.6 billion 
people on the planet by 2040 (Figure 1).

In contrast, the IPCC models include the emissions of the entire global economic systems 
and make use of shared socio-economic pathways (SSPs) to produce a range of different 
possible futures around the key drivers of change, including population and GDP. These 
are used in the IPCC models to provide estimates of future global energy requirements, 
demand for emissions-intensive products such as steel and cement, land-use changes, 
and associated emissions. They give a consistent ‘baseline’ storyline of future population, 
economic growth, societal attitudes, technology costs and the arena of international 
policy, that are independent of mitigation possibilities. 

3 Greenpeace reject the use of negative emissions technologies (see Appendix A), while others, 
including the IPCC’s net zero scenarios, are heavily reliant on bioenergy with carbon capture and 
storage with between 8-18 Gt CO2 being removed per annum when net zero is achieved (Greenpeace, 
2018).
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Each is based on a different narrative, with qualitative ‘low’, ‘medium’, or ‘high’ capabilities 
to mitigate or adapt (Figure 2).4 

• Figure 1: IEA annual global energy system emissions forecasts by fossil fuel type (left axis) 

and total cumulative emissions (yellow shading – right axis) to 2040. Source: IEA 2019.

To achieve standardisation the IPCC focus on a limited number of global warming 
scenarios know as Representative Concentration Pathways (RCPs), which have become 
the standard reference to classify different warming limits. Since CMIP5 and AR5 
these RCPs have been matched with the Shared Socioeconomic Pathways (SSPs). 
They combine to provide projections of cumulative greenhouse gas concentrations 
with associated estimates for radiative forcing and global warming. The SSP-RCPs 
combinations produce a range of emissions scenarios from the lowest total emissions 
pathways SSP1-RCP1.9 (introduced following the Paris Agreement and captures pathways 
that achieve the 1.5°C target), to the ‘worst-case’ pathways SSP5-RCP8.5 (Figure 2).5 This 
range corresponds to an increase in global mean temperatures above pre-industrial levels 
of around 1.5°C to 4.3°C in 2100. 

The resultant climate scenarios (also known as ‘emissions scenarios’) generated by these 
models given their underlying socio-economic drivers, are then used to understand the 
potential impacts of those emission scenarios on the global climate. However, and very 
importantly, most major climate mitigation models do not include this feedback dynamic. 

4 SSP1 is the Sustainability scenario: a world in which the global population peaks mid-century, and 
there are strong and flexible global, regional and national institutions; SSP2 is the Middle of the Road 
scenario: a continuation of economic and technological trends with slow process to achieving the 
SDGs; SSP3 is a Resurgent Nationalism scenario: regional rivalry and conflicts with weak global 
institutions, and fossil fuel dependence; SSP4 is an ever-increasing Inequality scenario: modelling 
a growing divide between prosperous and well educated societies and the global poor; and lastly 
SSP5 is the rapid growth scenario: a world in which economic output and fossil fuel energy use are 
unconstrained by environmental consequences (van Vuuren et al., 2014).

5 The numbers associated with the RCPs represent the total radiative forcing in the year 2100 relative 
to 1750 (from 1.9 W/m² to 8.5 W/m²)
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In most mitigation models, emissions and the climate risks they might generate do not 
impact the economic growth (Kolstad et al., 2014). The socio-economic drivers in the 
IEA scenarios and the SSPs of the IPCC have their future population and GDP set 
exogenously. Therefore, the purpose of the climate mitigation models is to understand 
how the changes in society and the economy represented by the socio-economic drivers 
might impact global emissions and the potential costs of policies to mitigate emissions to 
meet a future goal, such as achieving 1.5 degrees by 2100. 

• Figure 2: Global CO2 emissions (GtCO2) for all IAM runs in the SSP database, separated by 

SSP. Thick grey lines represent the Baseline scenario for each SSP where no carbon price 

is applied. Source: Carbon Brief, 2018. 

Opportunities for improvement

As the IEA and IPCC scenarios are all generated using different models with different 
socio-economic drivers it is not surprising that they produce the array of contrasting 
scenarios shown in Figures 1 and 2. It should be made clear that there are no probabilities 
associated with any of these scenarios. In other words, each scenario is equally as likely 
as all others. These scenarios are merely projections of possible futures and the model 
developers are quite clear on this point. This poses an obvious challenge to decision 
makers trying to address the climate risks that such scenarios present, given that risk is 
defined as likelihood multiplied by consequence and although these scenarios inform us 
of their consequences, we do not know the likelihood associated with any of them.

A good portion of this uncertainty is inherent in the pure complexity of the problem and 
providing a range of modelled scenarios is one approach that informs decision makers 
about the scale of this uncertainty. However, there are some sources of uncertainty that 
if addressed by the major mitigation models might offer decision-makers some more 
palatable solutions to this climate change conundrum. 

https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change
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Inputs and methodologies: In general, the differences in model scenarios and the costs 
of mitigation can be attributed to different methodologies (e.g. general equilibrium vs. 
post-Keynesian), different model structures (e.g. production function with elasticities, 
logit sharing for fuel swaps), representations of different technology options, and the 
parameterisation of those technologies (“techno-economic assumptions”) (Krey et 
al., 2019). Key differences include the assumptions implicitly coded into each model 
and those decided by the user (external assumptions); as well as which variables are 
endogenous (determined by the model) or exogenous (determined by factors outside 
the model). The IEA scenarios each use a consistent set of socioeconomic drivers 
and are produced by a single model. In contrast the SSPs represent very different 
socioeconomic themes and each of the IAM teams interprets the themes of the SSPs 
differently (e.g., rivalries between countries or sustainability ambitions). However, each 
share the same external assumptions about GDP, population and the policies or socio-
economic storylines of the relevant SSP. The main drivers of future exogenous change 
within the SSPs are arguably those long-term population and economic development, and 
urbanisation pathways (Riahi et al., 2017). Other factors that can differ between models 
include income elasticities, representations of tax systems, and technology costs. They 
each also contain a nexus of internal processes such as model calibration, optimisation, 
applications of a price on carbon, and mechanisms of delivering supply capacity and 
allowing technological development. Importantly, each of these assumptions influence 
the estimated costs of mitigation that result from these models – information which is 
presented to decision-makers that are being asked to support these mitigation efforts. 

Keeping up-to-date: Only modellers that regularly update their base-year calibration, 
such as the IEA’s Energy Technology Perspectives (ETP) model, appear to be able to 
keep up with clean energy technology progress and changes. For example, the increasing 
gap between the low levels of actual CCS deployment and the high CCS deployment 
required in ambitious temperature stabilisation scenarios; as well as the low levels of 
solar PV deployment in the Paris-compliant IPCC scenarios and the high levels of actual 
deployment (Minx et al., 2020). Updating of parameters such as technology costs can 
have dramatic effects. For example, the influential DICE model (see Appendix A) is 
known for its original unusually high ‘optimal’ warming levels of 3.5°C. However updating 
its parameters results in the DICE model recommending economically ‘optimal’ climate 
policies and emissions pathways that are in line with the UN Paris climate targets (Hänsel 
et al., 2020).

Uncertainty: Much of the uncertainty inherent in modelling the complex interactions 
between our climate system and the global economy reflects the lack of complete 
understanding of these systems (Weyant, 2017). An additional source of uncertainty is 
inherent in each system’s complex dynamics, which allow for the possibility of large scale, 
non-linear shifts in the Earth system (Oppenheimer et al., 2014), along with the ensuing 
economic catastrophes (Wagner & Weitzman, 2018). Significant discrepancies exist 
between current understanding of climate tipping points and their representation in the 
leading ‘simple’ IAMs DICE, FUND and PAGE (Lenton & Ciscar, 2013; Lontzek et al., 2015), 
undermining accurate estimates of the costs of climate change (Revesz et al., 2014). Such 
amplification mechanisms are also not necessarily negative, with positive tipping elements 
likely to exist in socioeconomic, technological, and political systems that might deliver, for 
example, accelerated climate mitigation (Farmer et al., 2019; Sharpe & Lenton, 2021; S. R. 
Smith et al., 2020). 
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One key positive tipping element is a result of the learning-by-doing feedbacks that have 
led to consistent long-term cost declines for certain key clean energy technologies –
which are poorly reflected in the IPCC and IEA scenarios (Minx et al., 2020). 

This report explores the implications of addressing some of these key opportunities for 
improvement. Specifically, we focus on the application of an alternative methodology for 
forecasting technology costs, the implications for using up-to-date empirical evidence, 
and incorporating a probabilistic technological change forecast method that enables the 
feedback dynamics associated with technology experience curves to be incorporated in 
an energy systems model.

Before we address these issues in the subsequent sections of this report, we will first 
provide here an overview of how such climate mitigation scenarios are being used by 
decision-makers around the world to provide some context as to how important such 
modelled scenarios are to our climate mitigation efforts.

 ● How are decision-makers currently using climate  
mitigation scenarios?

Climate scenario modelling is vital for policymaking on the international, national, and 
local scale as well as increasingly within the private sector (Fiedler et al., 2021). By 
2015, over 100 Energy System Models were being used in academic papers and policy 
in the UK alone (Hall & Buckley, 2016). Since then, the construction and evaluation of 
accessible models have proliferated even more.6 While it should be remembered that 
models deliver insights instead of answers (Huntington et al., 1982), these insights have 
been indispensable for creating awareness of the risks of climate change, inspiring over 
1,800 climate change laws worldwide (Eskander & Fankhauser, 2020), and other forms of 
climate action.7 In general climate mitigation models are used for the following:

• To set quantitative targets (international and national) and to review and assess 
progress towards those targets, 

• To develop sector strategies and assess possible pathways to mitigation,

• To test policy under various scenarios and model its impact,

• To determine risk and potential liabilities, and the flipside: to uncover potential 
opportunities,

• To develop regulation and recommendations for industry,

6 For example, in CMIP6 there are 49 different modelling groups participating, compared to 35 in CMIP5 
(Hausfather, 2019).

7 For example, The IPCC SR1.5 2018 is explicit about the need for scaling up of the NDCs, and, that 
without additional mitigation efforts, warming is more likely than not to exceed 4ºC: a temperature 
associated with risks of substantial species extinction, global and regional food insecurity, the 
consequential constraints on common human activities, and limited potential for adaptation. (IPCC, 
2014).
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• To determine adaptation requirements to physical changes, 

• To support attribution claims and to litigate against irresponsible actors, 

• To identify potential barriers to, or issues arising from, mitigation,8 

• To calculate costs, and balance climate needs with benefits and co-benefits.

Setting climate targets, plans, policies, and strategies

Target settings are a major application of climate scenarios, most prominently through 
guiding binding legislation on the international and national levels. By 2012, 67% of global 
GHG emissions were subject to national legislation or strategies (Lucon et al., 2014). 
Sub-national actors also have similar commitments, including cities (C40; Arup, 2016), 
regions,9 and private companies.

Most prominently, emissions modelling has been central to international agreements. The 
Paris Accord, adopted in 2015 by the parties to the UNFCCC (UN Framework Convention 
on Climate Change) aims to limit warming to well below 2°C and pursue efforts to limit 
it to 1.5°C, a goal informed by the IPCC AR5 and IEA 2014 ETP scenarios.10 Countries 
will need to report and reduce emissions in line with their Nationally Determined 
Contributions (NDCs), practical national pathways towards low-carbon and zero-carbon 
economies. Determining NDCs relied on a “stocktaking” process with the ‘fair’ allocation 
of emissions allowances from a ‘global carbon budget’, and regional assessment models 
using emissions scenarios for achievable pathways of various national strategies (van den 
Berg et al., 2020).

In conjunction with the NDCs, many countries have also introduced national legislation 
drawing on climate modelling or a scenario-based approach. The first legally binding 
national climate change mitigation target was the UK’s 2008 Climate Change Act (The 
UK government, 2008), which committed the UK to reduce its GHG emissions by 80% 
by 2050, under a carbon budgeting system. In 2019, it was updated to a net-zero target, 
taking into consideration ten new research projects, three expert advisory groups, and 
reviews of IPCC work and others. This included the 2018 IPCC SR1.5 and used models 
such as MAGICC and AIM/CGE 2.0 to address the likelihood of achieving the Paris 
Agreement goal (Committe on Climate Change, 2019). Table 2 provides a list of further 
examples of how climate scenarios and modelling has been utilised for the development 
of national and sub-national policy.

8 The IPCC AR5 WGIII is explicit that for buildings, barriers could include split incentives, fragmented 
markets and inadequate access to information. For industry, investment costs and a lack of 
information are the main obstacles. For AFOLU, it warns that bioenergy systems are not necessarily 
sustainable and efficient, instead recommending which bioenergy technologies should be used.

9 For Example, Victoria’s Climate Change Act 2017 (Climate Change Act, 2017).

10 This included presentations of climate modelling such as from the IPCC AR5, the IAMC (Integrated 
Assessment Modelling Consortium), as well as the IEA 2014 ETP 2 °C (SED, 2015).
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 ● Table 2: Examples of utilisation of climate scenarios and modelling for national  
and sub-national policy

Name of Policy Use Year Model(s) 
Used

How model (s) are used

US

Social Cost of 
Carbon (US EPA)

Calculating 
costs

2016 DICE, FUND, 
PAGE

• Monetisation of the threat of climate 
change into SCC figures

EU

2020 Climate & 
Energy Package 
(European 
Commission, 
2009), Fit for 55 
Package

Target 
setting, 
testing 
policies, 
sector-
specific 
strategies

2008, 
2020

PRIMES, 
POLES, 
GEM-E3, 
GAINS, 
GLOBIUM-
G4M, CAPRI, 
and models 
from other 
organisations 
incl. IRENA, 
Global 
Renewables 
Outlook, 2020

• The PRIMES model simulates a market 
equilibrium solution for EU energy 
supply and demand, including consistent 
EU carbon price trajectories. It provided 
a decomposition analysis of the 
changes in emissions drivers 2000-
2005 per sector and EU member state. 
It explored three cases to understand 
the effects of key policies; namely the 
ACEA agreement on car manufactures, 
the Biofuels Directive, and the RES-E 
Directive for renewable energy.

• GLOBIOM-G4M integrates the 
agricultural, bioenergy and forestry 
sectors, to project emissions from 
LULUCF

UK

Climate Change 
Act 2008 and 
“Building a Low-
Carbon Economy” 
(Committee on 
Climate Change, 
2008). Revised 
Net Zero goal 
2019

Target 
setting, 
Trading 
schemes, risk 
assessments 
and 
adaptations

2008 PAGE, 
MAGICC, 
IPCC AR4, 
WGI, WGIII, 
AgMIP, 
WaterMIP, 
CMIP3, 
CMIP5, 
Ackerman 
& Stanton 
(2008), Stern 
Review (2007)

• Uses standard PAGE model but then 
augment this to reflect more recent 
developments. This covers sulphate, 
equilibrium warning, damage function, 
low-cost control measures and 
abatement potential, and additional 
abatement costs.

• Uses MAGICC to project GHG 
concentrations and GMT for different 
emissions trajectories

• The 2017 Risk Assessment uses (Chp2 
p5): PESETA II, and the sector modelling 
intercomparisons as well as major 
syntheses 
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Name of Policy Use Year Model(s) 
Used

How model (s) are used

Singapore

National Climate 
Change Strategy 
(National 
Climate Change 
Secretariat, 2012) 

Adapting 
to physical 
risks, Sector-
specific 
strategies

2012 ICRM’s 
(Institute for 
Catastrophe 
Risk 
Management) 
modelling; IEA 
WEO (IEA, 
2011); IPCC 
AR4 

• how people respond to temperature, 
humidity, pollution, and ventilation. 

• update the national strategy 

• design ways to increase renewables, 
encourage efficiency improvements, 
change transport systems, etc

• address flood risks using a flood 
forecasting system; explore mangrove 
restoration 

• establish several research institutes and 
centres

Ireland

National Energy & 
Climate Plan

Sector-
specific 
strategies, 
Target 
setting, R&D 
investment 

2020 PLEXOS 
(electricity 
system model) 
SEAI BioHeat 
model, ESRI 
I3E CGE 
model 

• Considers multiple scenarios (WAM 
and WEM) and projections, detailed 
technology analysis of energy/low 
carbon technology to assist with 
the targeting of energy research & 
innovation investment and to fill the gaps 
in mass deployment of technologies 

Chile

Chile’s Nationally 
Determined 
Contribution 
and Chilean 
NDC mitigation 
proposal 
(Mitigation and 
Energy Working 
Group, 2020)

Identification 
of 
challenges & 
opportunities 
for Chilean 
mitigation 
pathways.

2020 LEAP, 
AMEBA, PELP, 
2006 IPCC 
Guidelines

• Sectoral models were used for Energy, 
IPPU, Agriculture, LULUCF and Waste. 
Activity data used for the GHG estimate 
was projected according to national 
guidelines and methodologies applied 
as per the 2006 IPCC Guidelines. For 
energy demand LEAP was used as a 
simulation model; for Power Systems 
AMEBA. Fuel price trajectories are 
obtained from the Long-Term Energy 
Planning Process.

Hong Kong

The People’s 
Republic of China 
Third National 
Communication 
on Climate 
Change (Melillo, 
2015)

Target 
Setting

2015 MARKAL-
MACRO

• The setting of scenarios was mainly 
based on the fuel structure, considering 
other factors including the energy 
efficiency of various components
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It should be noted that new policy targets can, in turn, influence the direction of scenario 
analysis. For example, political ambitions around the Paris Accords 1.5°C target have 
encouraged mitigation research to develop pathways that limit warming to 1.5°C such as 
the IPCC’s 2018 Special Report on Global Warming of 1.5°C (IPCC 2018 SR1.5). 

Additionally, a rare area of consensus among IAMs is that the current national pledges 
to reduce emissions by 2030 are insufficient to achieve a trajectory in line with the 
stated Paris target of 1.5°C (Pan et al., 2017). The multi-model study ADVANCE11 tests 
an NDC scenario which focuses on the aggregate effect of the NDCs and explores the 
‘decarbonisation bottlenecks’ arising from not updating to more ambitious targets. This 
makes uncontroversial the acute need to scale up the ambition of the NDCs and new 
scenarios analyses to accompany them.

Given the ‘ratcheting’ requirement (Paris Agreement, Article 4) for countries to 
communicate enhanced NDCs every five years, each country will need to report its 
progress and update its commitment at the upcoming Conference of Parties (COP26) 
in Glasgow. This requires monitoring and assessing the status of and opportunities for 
further national mitigation efforts, including updating models with technological and other 
parameter developments (Skelton et al., 2019). Despite this, only 40 countries submitted 
new NDC targets by the end of 2020, ahead of when COP26 was initially scheduled in 
Glasgow. Climate Action Tracker reports that only eight countries that they analysed 
submitted stronger NDC targets. These include the EU (who raised its 2030 target from 
40% below 1990 levels to 55%) and the UK (who increased it from 57% to 68%). Notably, 
China, the largest emitting country, has recently said they will achieve carbon neutrality by 
2060. In contrast, another eight countries have explicitly not increased their ambition in 
their new NDCs.12 These include Australia, who set the same target as before, and Brazil, 
who actively weakened their already insufficient targets.

11 Using the POLES, MESSAGE, GEM-E3-ICS, IMACLIM, REMIND, IMAGE, WITCH and AIM/CGE 
models. (Vrontisi et al., 2016).

12 Climate Action tracker, accessed 9th February 2021.

Name of Policy Use Year Model(s) 
Used

How model (s) are used

Tonga

Tonga Strategic 
Development 
Framework 2015-
2025 (Tonga 
2015)

Determining 
risk and 
uncovering 
opportunities

2015 2013 World 
risk Index

• establish the risk of natural hazards and 
the country’s exposure and vulnerability

• establish the growing vulnerability given 
sea-level rise and rising temperatures

Local Council of Victoria

Victoria Coastal 
Council 2008 and 
2014 Strategy

(Victorian Coastal 
Council, 2008)

Adapting 
to physical 
risks, sector-
specific 
strategy

2008, 
2014

IPCC Report • Sea level rise and flood management 
strategy planning

https://climateactiontracker.org/climate-target-update-tracker/
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Potentially, in response to inaction by the previous US administration, there has been 
some recent momentum in more ambitious climate targets by sub-state and non-state 
actors. Examples of this include the “Race to Zero” campaign, which aims to achieve net-
zero carbon emissions amongst “real economy” actors by 2050. As a new report states, 
the number of net-zero pledges amongst local governments and businesses has roughly 
doubled in less than a year, with many prioritising climate actions in their recovery from 
Covid-19 (Data-Driven EnviroLab & New Climate Institute, 2020). This trend may help put 
pressure on governments to catch-up when revising their NDCs. 

Given the targets developed regarding climate projections/emissions scenarios, IAM 
and sectoral systems models explore the potential for policy-led mitigation and test 
policy under various scenarios. Sector-specific policies (e.g. for energy, land-use and 
buildings strategies) have been more widely used than economy-wide policies (mainly 
due to administrative and political barriers preventing the (more optimal) economy-wide 
strategies) (Lucon et al., 2014). Energy Systems modelling has been especially essential 
for national energy strategy development towards decarbonising the energy sector and 
ensuring energy security. In a meta-analysis of UK energy scenarios (Energy Research 
Partnership, 2010), the role of modelling tools was deemed essential to understanding 
key uncertainties in future energy systems transitions and the broader energy system 
impacts, influencing numerous policy papers.13 

Other uses of climate mitigation scenarios

Climate mitigation scenarios have several important applications beyond setting climate 
targets, government plans, policies, and strategies. They are featuring more prominently 
in evaluating business risk and meeting climate risk disclosure requirements (Fiedler et 
al., 2021). They also have an application to legal cases, enabling litigators to translate 
the science into legal arguments (Stuart-Smith et al., 2021). Lastly, they are being used 
to help understand the needs of vulnerable regions for climate adaptation (Australian 
Government, 2011) and incorporate climate risk in the evaluation of proposed government 
projects costs-benefit analysis (IWGSCC, 2010). Such additional applications are 
explored in more detail in Appendix A and demonstrate the degree to which climate 
mitigation scenarios have infiltrated decision-making processes across much of society.

 

13 Notably, the White Paper on Nuclear Power (BERR, 2008), the Renewable Energy Strategy 
(Department of Energy and Climate Change, 2009), Electricity Market Reform (EMR) Impact 
assessment, the Fourth Carbon Budget (Climate Change Committee, 2011a), the Renewable Energy 
Review (Climate Change Committee, 2011b), the Energy White paper (Department of Energy & 
Climate Change, 2011), the Bioenergy Strategy paper (Department of Energy and Climate Change, 
2019), the Gas Generation strategy (Department of Energy & Climate Change, 2012) and the Heating 
Strategy (Department of Energy & Climate Change, 2013).
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Section 2: Empirical technological 
progress trends and the need for 
a fresh look at the future

 ● New clean energy opportunities

Over the last few decades, the costs of several important clean energy technologies have 
fallen steeply and consistently. Since 2010 the costs of solar PV energy, wind energy, 
batteries and electrolyzers fell by around 85%, 47%, 65% and 51% respectively (Way et 
al., 2020), in line with their historical trajectories. The exact reduction rates depend on 
how costs are measured, but these headline figures summarise well the radical nature 
of the progress observed. In contrast, fossil-fuel-based technologies have seen no such 
progress, costs have remained approximately flat.

As clean energy costs have fallen, various tipping points have been crossed (Farmer et 
al., 2019; Sharpe & Lenton, 2021), and the scale of the markets within which they compete 
has gradually expanded, from niche applications to mass market. PV and wind are now 
on average the cheapest forms of new-build electricity generation on the planet (IEA, 
2020c), and some electric vehicles (EVs) are getting close to parity with their internal 
combustion engine vehicle (ICEV) counterparts on a total-cost-of-ownership (TCO) basis 
(Hagman et al., 2016) (with some even predicting their sticker prices will be cheaper 
within around 2-3 years (Henze, 2020). It is difficult to understand exactly why these 
technologies have steeper experience curves, although it has become increasingly clear 
that characteristics inherent to certain technologies, such as simplicity, modularity, and 
standardisation, are a large part of why policy has been so successful in these cases, 
while it has failed in others (Huenteler et al., 2016; Malhotra & Schmidt, 2020). But few 
successes were by accident, as they are generally the result of decades-long policy 
support (albeit erratic and weak) that led, as anticipated, to increased innovation and 
experience with technology deployment, in both the public and private sectors. 

Faced with such unrelentingly positive trends, it is important to consider why all large 
climate mitigation models still conclude, as they always have done, that any transition to 
a climate-safe energy system would be an arduous, speculative, and expensive task. This 
question is especially salient because when using up-to-date data, empirical trends show 
that future costs of key energy technologies will almost certainly be much lower than 
these models assume or predict (Krey et al., 2019).

Alongside advances in the technologies themselves, there have also been advances in 
understanding how technological change proceeds in the economy more broadly, and 
of the characteristics that fast-progressing technologies have in common (Wilson et al., 
2020). 
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Methods that are statistically validated and firmly grounded in data have been developed 
for forecasting technological progress (Farmer & Lafond, 2016; Lafond et al., 2018). As a 
result of extensive data collection and analysis, it is now apparent that the striking cost 
reductions described above are just part of much longer technological trends that are 
expected to continue into the future.

Such progress trends, which have been widely observed and studied since at least the 
1960s (Arrow, 1962), were originally assimilated into energy models in the late 1990s 
(Mattsson & Wene, 1997), and by the year 2000 the benefits of targeted support for 
low carbon technologies were widely acknowledged (Grübler et al., 1999; IEA, 2020c). 
Modelling at the time suggested that in the long run, total energy system costs would 
be approximately equivalent, regardless of whether a high- or low-carbon scenario 
was pursued, it was simply a matter of making learning investments in key low-carbon 
technologies early enough to bring their costs down and enable widespread adoption 
(Gritsevskyi & Nakićenovi, 2000; Mattsson & Wene, 1997).

Since these promising early results though, energy models have ballooned in size and 
complexity. The technologies, geographies, and socio-economic mechanisms they 
include have been disaggregated in to smaller and smaller pieces, with the intended aim 
of making the models more realistic. However, increasing model complexity inevitably 
leads to reduced transparency, making it harder to understand precisely what is driving 
the results (Farmer et al., 2015).

Large models face two serious problems. First, they are exceedingly hard to calibrate, 
initialise, and keep up to date using real world data. This is partly because there are so 
many parameters that it is practically difficult to obtain and update the relevant inputs as 
new data becomes available; but it is also partly because the required data simply does 
not exist. At best this could be because nobody has collected the data (e.g., for a specific 
technology in a specific region), but often it is because the data is fundamentally difficult 
or impossible to know, as is the case with parameters regarding consumer preferences, 
firm investment decisions or the “damage function” (the extent to which climate change 
damages the economy) (Pindyck, 2013).

Second, it is difficult and time consuming to validate, or “back-test”, large models against 
real world data.14 The scientific method entails observing data, proposing a model for the 
underlying process, then carefully testing the model’s ability to make predictions using 
the observed data. Failing to adequately perform the validation step means the model’s 
predictive power is unknown, and so results should be considered merely speculative. 
Yet, no large energy models have been comprehensively back-tested, while only a few 
have been partially back-tested, despite many studies highlighting performance failures in 
specific cases (e.g., Wilson et al., 2013). Again, this is partly because the data required for 
validation is very hard or impossible to obtain (especially the historical data required for 
back-testing), and partly also because it is very time consuming.

14 Back-testing involves calibrating a model to a given point in the past, then running the model from that 
point, and comparing its forecasts to observed data in the past. This allows for rigorous, quantitative 
assessment of its ability to accurately forecast the behaviour of the underlying system.
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In hindsight, the increase in model complexity appears to have had two important 
effects. First, it made the models more opaque and harder to validate; and second, it 
involved the addition of many new model components, which appear to have had the 
cumulatively effect of artificially constraining the development of PV, wind, and energy 
storage (whether grid-scale storage or EVs). These constraints prevented model users 
from exploring scenarios in which these technologies developed along anything other 
than very low growth and low progress paths (as compared to the realised path). In other 
words, the path these technologies would follow was evaluated prior to the model’s 
formulation and considered so expensive and technically infeasible that a renewables-
based system could never happen. Presumably, it was also viewed by the modellers to 
be too unrealistic and improbable to even consider testing these underlying assumptions. 
Modellers’ beliefs about the limitations of certain technologies were encoded in the 
models, which then produced results that simply confirmed and presumably further 
shaped the modellers’ beliefs.

The fact is that (to the best of our knowledge) not one single large energy model has 
considered any scenario in which global average PV costs would fall to around 50$/MWh 
in 2020, yet this is what has happened. This astounding failure suggests a lack of regard 
for model validation in general, and a lack of understanding of the need to pay special 
attention to fast progressing technologies, for example by only using technology cost 
forecasts that are supported by substantial empirical evidence. Instead, modelling teams 
have focused on extending, expanding, and complicating their models in other areas. By 
focusing on smaller and smaller pieces of the puzzle however, the significance of the 
larger, more important trends has been neglected – and still is, as evidenced by the lack 
of PV and EVs in most recent IPCC scenarios.

This lack of attention paid to empirical trends is surprising for several reasons. First, 
recent costs are a clear reminder that for some technologies (but not all), sustained policy 
support works, and can help shape far preferable sets of technology options than would 
be arrived at through myopic market processes alone (and any ensuing market distortions 
that may result, of course). Second, the science of technology forecasting has advanced 
dramatically in the last ten years, with ever more reliable, evidence-based forecasts being 
produced. Third, it is well known that choices around how to model technological change 
in energy-climate models have a dramatic effect on the results produced (Creutzig et 
al., 2017). Finally, recent developments put a handful of clean energy technologies on 
the cusp of having a truly enormous impact on the global energy-climate system, so the 
observed trends and dynamics that brought these technologies to this point should rightly 
be centre stage in any modelling of their future development.

With all of this is mind, in particular the need to ensure future energy scenarios are 
consistent with observed historical trends, now is a good time to reassess future 
prospects both for specific technologies and for the wider energy system, to see how 
these compare with empirical trends, and to examine the assumptions underlying the 
large energy models that are central in shaping our common understanding of which 
future energy scenarios are possible.
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 ● Historical development of energy system reporting

To understand the context of energy scenarios produced by different modelling 
approaches, it is important to understand how the energy system developed up to this 
point. Ever since modern energy accounting methods were introduced well over a century 
ago, primary energy (the energy contained in energy sources as they exist in nature) has 
been the dominant metric used to describe energy stocks and flows. This is because 
historically most energy used was in the form of coal, oil, gas, or biomass, which are 
naturally described in terms of their physical mass and volume.

However, this characterisation of energy supply is not well suited for electricity generated 
from non-combustible sources, such as hydro, solar and wind. If not used with care, 
primary energy can give a distorted picture of the energy system, as it does not account 
for the large differences in efficiency with which different energy sources are converted 
into useful energy services in the economy. Energy services, such as mobility, lighting, 
heating, and cooling etc. are the end-use services that consumers care about on a 
practical basis, and it makes no difference to them how much primary energy was lost in 
conversion processes along the way.

In fact, only around 20-70% of the primary energy contained in fossil fuels typically ends 
up providing useful energy services (20-30% for mobility, up to around 70% for heating), 
the rest is lost mostly as waste heat. In contrast, around 95% of the energy produced 
by solar and wind electricity generators is put towards useful work, with only a small 
fraction being lost as heat during electricity transmission and distribution.15 Clearly, when 
comparing energy sources with such diverse characteristics, it makes sense to use a 
metric that somehow normalises energy quantities in terms of the useful services they 
provide to society. For this we use the useful energy metric, which is defined as the last 
measurable flow of energy before the delivery of energy services (Grubler et al., 2012).

Useful energy accounts for all conversion losses up to the point of use, and so captures 
most of the largest efficiency differences between the various primary energy sources 
and energy carriers in use in the economy.16 However, there are further efficiency 
differences in end-use technologies that are not captured by this metric alone. For 
example, even though electric heat pumps are far more energy efficient than gas boilers, 
requiring only around one fifth of the useful energy to provide equivalent levels of heating 
service, the total quantity of useful energy required will also depend on the quality of 
insulation present in the building being heated.

15 Note that the primary-to-useful energy conversion efficiency concept described here is distinct 
from both the efficiency with which renewable electricity technologies extract energy from their 
energy sources (e.g., PV panels are currently around 20-25% efficient at converting solar energy 
to electricity), and the utilisation rate of the technology (e.g., PV panels produce power for around 
18% of the time (IRENA 2020). Note further that neither of these apparently “low” values for PV are 
problematic, all that matters is the cost of the resulting energy, which, as stated above, is on average 
the cheapest electricity on the planet.

16 Energy carriers (or intermediate or secondary energy) are substances or phenomena used in end-use 
energy applications (such as cars, furnaces, computers). Gasoline, coal, and electricity are examples 
of energy carriers. Primary energy resources are often converted to different energy carriers to 
facilitate transport, storage, or market transactions of energy. For example, crude oil is converted to 
gasoline for use in vehicles and coal is converted to electricity for use in electric appliances.
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While useful energy is a much better metric than primary energy for comparing the 
practical usefulness of different energy sources, it still only gives a rough guide. In many 
cases it is an approximate lower bound on the efficiency gains available from using 
modern, electricity-based technologies instead of old, fossil-fuel-based technologies. 
Therefore, with the caveat that the concept is intrinsically hard to quantify and does not 
represent the full picture, we use a simple useful energy metric here that captures the 
most important differences: we scale primary energy from each source by a constant 
factor that roughly represents its “average” conversion efficiency. Though these 
conversion efficiencies may vary with time as technological progress occurs, on the 
whole they have remained roughly constant for at least the last half century, so this simple 
approach is a good first-order approximation.

Figure 3 shows the amount of useful energy used to provide energy services in the 
economy for the last century, from all major energy sources. We use the following 
efficiency factors to convert energy carriers to useful energy: biomass: 25%; oil: 25%; 
coal: 60%; gas: 60%; and electricity: 90%. These are roughly the values observed 
historically (De Stercke, 2014).

• Figure 3: Historic trends in useful energy supply from all major energy sources. The dashed 

yellow line shows one possible trajectory for the future development of solar PV, called the 

Decisive Transition scenario in this report.

Note that data is plotted on a logarithmic scale. This is a useful perspective for natural 
systems whose ability to grow is largely determined by their present size (for example, 
this applies to many systems related to economic growth). In other words, it is not so 
important how big any given component is, what matters is its growth rate. 
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On a logarithmic scale, constant growth rates are manifested as straight lines. The plot 
shows that while fossil fuels had fairly high constant growth rates historically, since 
around 1970 they have been much lower. It also shows that solar PV is the fastest growing 
energy supply technology ever seen, and that wind is also growing quickly. In contrast 
to all other major energy sources, solar and wind electricity generation have on average 
grown at over 40% per year and 20% per year, respectively, for the last 30 years.

High growth rates cannot continue forever, but the exact points at which they switch to 
lower growth trajectories are of great importance, as these are key determinants of how 
quickly emissions will be removed from the system, as clean, modern technologies replace 
old, dirty technologies. If PV and wind continue to grow at roughly their current rates for 
just one more decade, they will provide almost as much electricity as the entire power 
generation system produces today. While this is very significant in itself, decarbonising 
transport would require extra electricity as compared to that used today, so there would 
still be room for much more growth after this.

Faced with these clear and apparently optimistic trends, which echo the cost reduction 
trends already mentioned, it is important to consider what might cause these growth 
trends to slow. Quite simply, it is the relative costs of different technologies, and the effect 
that policy may have on these. Hence it is necessary to explore possible technology cost 
trajectories, but before moving on to this it is worth first considering how energy models 
have in the past imagined the energy system may evolve: what kind of scenarios have 
previously been constructed, presented, and analysed by modellers and policy makers?

 ● How have scenarios changed over time?

Modelling large, slow-moving objects is relatively easy, it is the modelling of small, dynamic 
objects that is often more difficult, and may therefore serve as a better barometer of a 
model’s reliability and veracity, and potentially help uncover systematic biases. Instead 
of observing historical projections of, say, global oil or gas consumption, it is more 
enlightening to observe how smaller system components such as solar PV and wind have 
been projected to develop in various scenarios over the years.

The most frequent and standardised data available for observing such trends are the 
future technology deployment data contained in the IEA’s annual World Energy Outlook 
(WEO) reports. These give levels of future technology deployment that were, as a result 
of a vast collection of modelling and data assumptions, considered to be consistent with 
some given scenario of how the global energy system may evolve. Figure 4 shows the 
development of solar PV deployment scenarios over time.

It is important to highlight that these projections do not represent simple, unconditional 
forecasts of how deployment was predicted to evolve, so should not be interpreted in 
this way. Having said that, each data point was the product of a long, detailed process 
of technology and economic modelling, so observing the overall trend is a good starting 
point for further analysis. At the very least, the observed data illustrates the kind of 
scenarios that have been available to policy makers for analysis and, importantly, how 
these scenarios have changed over time.
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• Figure 4: IEA projections of future installed generation from solar PV in various scenarios 

from successive publications. The historic data is the same as that shown on Figure 3. 

Source: IEA, World Energy Outlook 2006-2020. The light blue band shows the approximate 

long run trend.

While the plot uses data from the IEA (because it is the longest, most consistent, and 
highest quality data available), other models produce comparable scenario data that 
could also be used. However, other models’ data is much harder to obtain, less frequent, 
and generally less consistent in terms of methodologies employed. As far as we are 
aware, the trend shown here is entirely consistent with other models’ output, though this 
is hard to verify in detail due to their poor record in producing regular updates to allow 
cross-validation by the wider scientific community.

The plot shows that deployment levels observed in reality have been consistently much 
higher than levels in scenarios presented to policy makers and industry in the WEO 
reports. While the details of how this happened – and what the implications have been 
– are complex (Hoekstra et al., 2017; Johnsen, 2016), the key point to note is that the 
development of the energy system as it actually occurred has consistently not been 
presented to policy makers as a plausible, realistic scenario. EVs, grid batteries and 
electrolysers are all on growth curves similar to PV, yet barely feature in the wide array of 
scenarios available to policy makers today. 
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This raises the obvious question: in hindsight, will the scenarios currently being 
considered adhere to the same systematic trend? To answer this question, we need 
to know how scenarios are constructed, in particular how future technology costs are 
modelled.

 ● Historical technology cost trends

Technologies that eventually reach mass commercialisation typically start out very 
expensive, and through innovation and learning over many years, decline in cost. In 
some cases, once a technology reaches cost levels similar to its direct competitors, 
cost reductions stop, and stable market shares are established. This happened for both 
nuclear power and combined-cycle gas turbines (CCGTs): costs fell sharply during their 
initial commercialisation phases in the 1960s and 1980s, respectively, but then plateaued 
as stable market shares were reached (or even began rising in the case of nuclear power) 
(Way, Mealy & Farmer 2020). The precise shares eventually reached are determined by a 
whole range of characteristics of both the technologies themselves and the wider system 
within which they are embedded.

In other cases, though, a technology’s cost continues falling to levels lower than its 
direct competitors, in which case market dominance is achieved. An example of this is 
the eventual domination of combined-cycle gas turbines over open-cycle gas turbines 
(OCGTs) for electricity generation (though as noted above once CCGT costs undercut 
their OCGT competitor, they stopped falling). A key question then when considering 
technology deployment patterns is – how far will a technology’s cost continue to fall due 
to ongoing R&D, innovation and learning processes? To provide background context, 
Figure 5 shows long-run useful energy costs and prices of key energy technologies (using 
the same efficiency conversion factors as in Figure 5)

Note that again the data in Figure 5 is plotted on a logarithmic scale, as this makes the 
relevant long-run trends easy to see. A cost reduction of a fixed percentage per year is 
manifested here as a straight line. Hence it is clear that the cost of solar electricity has 
fallen at around 10% each year for at least the last half century. In contrast, oil, coal, and 
gas prices have been approximately constant for over a century.

Coal-fired electricity improved consistently over the first half of the twentieth century 
but then progress stopped. This is because initially, innovation and learning processes 
generated significant design improvements in all aspects of this relatively unexplored 
technology. In addition, the range of tools and knowledge available for discovering and 
implementing improvements themselves expanded significantly during this period. As time 
wore on though, it became harder and harder to discover novel improvements for most 
of the equipment used, as design and efficiency limits inherent to the underlying physical 
processes were approached. Eventually no significant further cost reductions were found, 
and costs have approximately tracked the underlying fuel price ever since (in fact rising 
slightly due to system-wide regulations attempting to internalise a small fraction of the 
significant external pollution damages caused by the technology).
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• Figure 5: Long-run useful energy costs and prices of major energy supply technologies. 

Primary oil, coal and gas paths are based on price data; all other technology paths are 

based on cost data. Costs and prices are scaled by technology-specific useful energy 

conversion factors. The dashed yellow line and shaded area show the cost forecast for the 

LCOE of solar PV in the Decisive Transition scenario (median and 95% confidence interval).

Solar, wind and batteries are knowledge intensive technologies that require no fuel 
inputs and are not expected to follow this simple trend. Instead, their continued progress 
depends on factors such as materials science, R&D applied to manufacturing, deployment 
and control processes, and manufacturing scale. Because these are such knowledge 
intensive technologies, and the stock of knowledge can just keep expanding as long as 
resources continue to be invested, there is no clear reason why cost reductions cannot 
continue on their current trajectories for quite some time. For example, improvements 
in computers and algorithms will likely allow the discovery of better materials, which will 
in turn translate into better performing technologies (e.g., higher PV module efficiency 
and longevity, lower manufacturing costs) (Schmidt et al., 2019). Knowledge intensive 
processes build upon past knowledge (which is not easily forgotten) and diffuse rapidly 
among the community. As long as there are discoveries to be made, investing more 
effort will be a productive activity. While it is possible to break down cost progress 
into various components such as financing, manufacturing, installation, maintenance, 
decommissioning, recycling etc. (Kavlak et al., 2018) these are all highly knowledge 
intensive activities and the distinctions between them are likely negligible relative to the 
large, constant fuel input costs required by any fossil fuel alternative.
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In contrast, long-run fossil fuel costs are determined by two factors: the availability of 
physical resources and the costs involved in acquiring and using these resources. On the 
one hand, innovation, and technological progress act to make the extraction, transport, 
and usage of fossil fuels cheaper (i.e., these are knowledge intensive activities), but on 
the other hand, resource depletion acts to make them all more expensive. The result is 
that continued innovation and learning appear to be required just to keep price levels 
approximately constant – there is no long-run progress (see Figure 5).

 ● Technology cost forecasting

With this historical picture in mind, it is important to consider whether these trends will 
continue in future: how well can technology costs be forecast? This question has been 
studied in detail over many years, and various mathematical models have been proposed 
to forecast technology costs based on observed data of factors such as time, annual 
production, cumulative production, R&D investment, and combinations thereof.

Two well-known patterns observed in technology data are Moore’s law, which refers to 
a regularity in the relationship between cost and time, and Wright’s law (also known as 
the learning curve, or experience curve), which refers to a regularity in the relationship 
between cost and experience (where experience means the sum total of humanity’s 
“experience” with the technology). The concept of experience is hard to define or quantify 
though, so is often proxied by the cumulative production of a technology. This still leaves 
room for interpretation though, for example, the “production” of electricity generation 
technologies can be measured either in terms of nameplate capacity installed (or 
produced), electricity generated or number of generating units produced. While it is good 
to be aware of this nuance, for most applications the choice of variable does not make a 
big difference.

• Figure 6: The relationship between unit costs and time (left) and cumulative production 

(right) for various technologies.
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To quantitatively test the various mathematical relationships proposed in the literature, 
Nagy et al. 2013 collected data on over 50 technologies spanning many decades. This 
dataset was later expanded by Farmer & Lafond 2016 and Lafond et al. 2018. The data 
is shown in Figure 6, where the left panel shows costs plotted against time, and the right 
panel shows costs plotted against experience.

There are two important observations to make. First, there are high levels of regularity 
in the cost trends observed. Second, different technologies improve at very different 
rates. Together these two facts will have important consequences for updating our 
understanding of various technologies’ likely roles in climate change mitigation.

Nagy et al. 2013 performed a set of hindcasting (or back-testing) experiments that tested 
the ability of six different models to make simple point forecasts (including the Moore’s 
and Wright’s law models). For each technology, at each year in the past, data observed 
prior to that year was used to calibrate each model and make forecasts for “future” years 
(i.e., years after the year in which the forecast was made, but which are nevertheless in 
the past relative to now). These forecasts were then compared with the realised “future” 
values, and the performance of each model was statistically quantified. Moore’s law 
and Wright’s law forecasts were found to produce the best forecasts (i.e., the smallest 
forecast errors), and so subsequent statistical analysis focused on these.

As a first extension of this work, Farmer & Lafond 2016 used the same dataset to test a 
more advanced forecasting method based on Moore’s law, which uses both the observed 
trend and the volatility of historical data to produce probabilistic forecasts. The basic 
idea is that in addition to a stable, underlying Moore’s law cost reduction trend, there are 
also random fluctuations that occur annually, which may cause costs to depart from the 
stable trend. The intuition for this model is that technological progress and innovation act 
in reliable, methodical ways to reduce costs, but external factors from other parts of the 
economy may also have an impact, in a periodic but random way. These random shocks, 
which may be positive or negative, are independent of innovation within the field of the 
technology itself. For example, there could be a shortage of materials due to activity 
elsewhere in the economy; or a new, better machine may be developed in another field 
that happens to bring costs down significantly. These random shocks accumulate over 
time, potentially dragging the technology’s cost far away from the underlying trend and 
forming a probability distribution of possible future technology costs. Historical data is 
used to calibrate both the stable trend component and the periodic shocks, and hence 
produce technology-specific probabilistic forecasts that are consistent with past data.

The same rigorous hindcasting procedure described earlier was implemented, and this 
verified that the probabilistic forecasts made using this method were highly consistent 
with observed data. Therefore, to the best of our knowledge this forecasting method 
should perform just as well when making real, out-of-sample forecasts of the future. The 
work was extended further by Lafond et al. 2018, where instead of applying Moore’s law 
to the stable, underlying cost reduction trend, they used the Wright’s law relationship, 
so that increases in experience are assumed to cause cost reductions. As before, the 
hindcasting procedure was implemented, and it was found that the probabilistic forecasts 
generated by this method are of approximately equally high quality as those produced by 
the probabilistic Moore’s law method.
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However, there is a significant difference between the two approaches. Moore’s law 
methods suppose that technology costs are best predicted based purely on the 
passage of time; hence, these forecasts are independent of everything else going on 
in the economy. This may be a reasonable assumption in some limited cases, but it is 
incompatible with the notion that exerting more effort on a given technology – throughout 
the entire global economy, from R&D through to end-users – will have an impact on the 
speed of innovation and improvements that occur.

As an example of why it makes sense for technology cost forecasts to depend on 
experience, note that much of the very recent progress in PV modules is the result of the 
technology reaching a scale at which high volume manufacturing processes are used. 
But if government deployment incentives had been lower than they were for the last two 
decades, production volumes would likely be much smaller, so economies of scale due 
to manufacturing process optimisation would not yet have been achieved. Conversely, if 
deployment incentives had been higher or earlier (within reason) then it is likely that costs 
would have fallen earlier too. After all, the techniques required to scale up production 
were not ground-breaking, requiring no fundamental innovations. That said, there are 
clearly some important relationships with other sectors and technologies, for example, 
progress in computer chip manufacturing likely improved the availability of silicon wafers 
used in PV module manufacturing. However, the multiple factors associated with progress 
are hard to tease apart and it is unwise to rely on ex-post, technology-specific narratives, 
rather than quantitative, empirically tested models (Kavlak et al., 2018; Nemet, 2006).

Many authors have highlighted the fact that the experience curve correlation does not 
imply causation, and that while deployment may cause costs to drop due to technological 
progress, decreasing costs may also cause greater deployment, so care must be taken 
with any forecasts made using experience curves (Nordhaus, 2009; Witajewski-Baltvilks 
et al., 2015). In order to address this issue, (Lafond et al., 2020) studied technologies 
produced in the US for use in World War II, as this is a case in which it is clear that 
production was caused by government policy, as opposed to falling prices. It was found 
that for this large data set, increasing experience did indeed cause costs to fall, to 
some extent, though costs also fell as a result of background progress elsewhere in 
the economy. The latter part is not surprising since there was so much technological 
progress occurring throughout society in this period, but overall, the results still provide 
solid empirical evidence for the argument that increased experience and innovation do, to 
some extent, cause technological progress and should be modelled as such.

The end result of these long, detailed investigations completed over the last decade is 
that the probabilistic Wright’s law forecasting method developed by Lafond et al. (2018) 
is an empirically validated method that is also consistent with the intuition that the more 
effort is directed towards improving a technology, the greater the chance there is of 
improvement occurring. This is the model we use in this report.
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 ● Modelling technological change

The purpose of describing the above developments in such detail is to underscore the 
fact that forecasting technological change is incredibly difficult, and that there is great 
variation in the quality of forecasting methods available. Because of this, it is essential 
to use the most empirically and theoretically justified methods possible, and to regularly 
produce forecasts that can be compared with observed data, in order to continually 
assess their performance.

Furthermore, energy-climate models are often very sensitive to future technology costs, 
so it is essential that they use the most trustworthy forecasts possible. Since this is 
such a critical element of energy-climate models, one would expect that both the cost 
forecasting methodology and the forecasts themselves would be described prominently 
in documentation and results, but unfortunately this is not the case. In most cases the 
forecasting method is described only briefly at best, and specific cost forecasts are not 
documented at all.

The way technological change (TC) is modelled in energy-climate models can be divided 
in to two categories: exogenous TC or endogenous TC. In exogenous TC, technology 
costs are defined by a model, such as Moore’s law, and remain permanently fixed 
throughout the scenario construction process, independent of any market or deployment 
models being used. In endogenous TC, however, technology costs depend on the 
scenario construction process itself, and a model, such as Wright’s law, is used to relate 
costs to deployment, and vice versa.

Assessing model cost forecasts and projections

Comprehensive testing and validation of large energy models is infeasible by anyone 
except the model developers themselves. In addition, the technology cost forecasting 
methods, assumptions, and constraints used in the models are often poorly documented, 
opaque, and hence impossible to scrutinise outside of the full modelling environment. 
Therefore, researchers attempting to understand how reasonable and reliable the models’ 
characterisation of future technology developments are likely to be, are left with few 
options.

One simple approach is to examine publicly available model outputs, for selected model 
components only, and compare them with known, realised data points. One would 
reasonably ask what historical data can tell us about modelled technology costs in future. 
Indeed, the only way this could yield any insight would be if there was a stable, erroneous 
correlation between past and future costs. This is precisely what we observe. Since it is 
well known that there have been consistent discrepancies between the IEA’s PV capacity 
projections and reality (Figure 4), this is a good place to start in attempting to understand 
technology cost projections too.

We examined the IEA’s WEO reports for all available years and recorded all solar PV 
cost values found in each – both the current costs and the projected future costs. The 
reporting is not consistent over the reports, with different years providing either capital 
cost or levelised cost of electricity (called “generating costs” in early reports) in various 
years, or sometimes no data at all. 
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• Figure 7: Actual versus IEA projected LCOE of Solar PV. Sources: IEA World Energy 

Outlook 2001-2020, Nemet (2006) and IRENA (2020). The dots show data points provided 

for different scenarios and regions in successive WEO reports. Connecting lines are 

provided to emphasise the underlying trend.

Each projected cost value is associated with a specific scenario, and in most years three 
scenarios are provided. In recent reports, scenario- and region- specific costs are given, 
but in general the differences are small. Figure 7 shows the IEA’s PV LCOE projections 
over the years, plus a long time series of actual LCOE values for PV in the US (which is a 
good approximation for the global average). 

Since 2001, the IEA consistently projected a much more gradual decline in costs than 
actually occurred. Projections for decades ahead became outdated within just a few 
years. For example, in 2010 the IEA projected that PV LCOE would be around $180/MWh 
in 2035; only three years later it was already below $170/MWh (all in constant 2020 USD).

The plot shows that there has been a systematic bias in the projected future costs of PV 
reported in the WEOs. This suggests that either there is a fundamental flaw in the way 
these costs have been modelled, or, implausibly, that every single year, only high-cost 
PV scenarios have been reported. The former is clearly more likely, but it is impossible 
to know for sure since the model has not been tested (or made available for testing). If 
the errors were simply due to the inherent uncertainty of the future and random events 
in the world, then we would expect some cost projections to be high and some low (as 
is commonly observed in oil price forecasts). The systematic nature of the errors here 
implies a systematic error source.
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Whatever the cause, the fact is that modellers, policy makers, investors and analysts 
reading the WEOs have, for the last two decades, consistently been given the impression 
that PV is and will always be a very expensive technology. This is a serious failing. The IEA 
states that cost projections are internally consistent with the scenario being modelled, i.e., 
they are conditional upon all scenario assumptions, and so if the scenario assumptions 
are not realised, then the cost projections should also not be expected to be realised. 
While this is a valid point, due to the inevitable conditionality of any sophisticated forecast 
methodology, it does not explain why, since the projections have clearly been at odds 
with the data since around 2010, suitable adjustments were not made to the scenario 
assumptions, to explore scenarios that produced projections more in line with the 
historical trend. It is striking how, when plotted against time in this way, all the projections 
have almost exactly the same exponentially decreasing trend, and how this is clearly at 
odds with the long run trend.

That WEO projections are overly pessimistic in both cost and deployment of renewables 
suggests that the modelling approach used is systematically failing to account properly 
for endogenous TC. These two factors are inherently linked. If the broader deployment of 
technology reduces its cost through learning, then too little growth also implies too little 
cost reduction. Conversely, if the technology becomes cheaper, it makes sense that it 
becomes more widely used.

It should be noted that, as detailed in Krey et al. (2019), all major IAMs also use PV cost 
projections that are significantly higher than the data suggests is likely. In fact, all IAMs 
considered in that study use PV capital costs in 2050 that are higher than current PV 
capital costs in the US. The problem of inadequate representation of endogenous TC 
in energy models is therefore a widespread phenomenon. Furthermore, the reason why 
attempts to assess the reliability of large models has so far focused on PV is simply 
because it is the technology for which most data is available, since it has been relatively 
well documented and included in models for several years now. Other clean energy 
technologies such as grid battery storage, EVs and electrolyzers are likely to be similarly 
poorly represented.

What causes the projections to go so wrong?

It is difficult to say precisely why large models have consistently considered some 
realised technology trends to be unviable scenarios, but the most likely reasons are: 

1. Initialising models with out-of-date, unrealistically high-cost data. Even just a few 
years can make a lot of difference for fast progressing technologies like PV and 
batteries.

2. Using technology progress rates that are lower than historical data suggest are 
justified.

3. Imposing an upper limit on the percentage of variable renewable energy (VRE) al-
lowed in the power grid.

4. Requiring VRE sources to be backed up with energy storage technologies (e.g., 
batteries, hydrogen) whose costs are themselves badly calibrated (too high) and not 
consistent with observed progress trends.

5. Imposing an unrealistically high mark-up on the cost of VRE in the power grid, to 
account for system integration costs.
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6. Imposing growth rate constraints on technologies.

7. Imposing floor costs on technologies, designed to prevent their costs falling below 
some exogenously defined levels.

8. Not accounting for technology-specific characteristics that alter the value of tech-
nologies in different regions or markets (for example, the correlation between PV 
and air-conditioner demand increases the relative value of PV in some markets).

Different models appear to include different combinations of these factors, all of which 
may contribute to preventing experience curve trends being accurately portrayed in 
model outputs. In models that use endogenous TC, assumptions that directly constrain 
technology deployment (3, 4, 5, 6, 8) cause cost reductions to be constrained, because 
less learning occurs. Conversely, assumptions that directly constrain cost reductions (1, 
2, 7) cause deployment to be constrained, because cheaper technologies are generally 
deployed in largest quantities. These constraints thus cause the cost-deployment 
feedback loop observed empirically from being accurately replicated in models.

As well as observing how PV cost projections have changed over time, we can also 
observe how one internal feature of the cost modelling process has changed over time: 
PV floor costs. Floor costs are often imposed in models that use endogenous TC, as a 
way of preventing technology costs from becoming lower, and installations becoming 
higher, than modellers consider realistic. However, there is no empirical evidence 
to suggest that floor costs are a sensible modelling choice in the long run. After all, 
computer processing power costs have fallen by around seven orders of magnitude since 
the 1970s, while PV module costs have only fallen by around four, so far. Using modellers’ 
guesses to determine lower bounds on technology costs in future is not a reliable 
strategy. Table 3 shows some floor costs that have been used in IAMs over the years.

 ● Table 3: Solar PV floor costs in various IAMs compared with realised 
PV system prices. Floor costs were collected directly from the relevant 
papers, building upon existing literature reviews by Baker et al. (2013), 
DeCian et al. (2016), and Carrara (2018). PV system price data is for US 
systems, collected from IEA PVPS Trends reports.

Year Paper Model PV system 
price in US, 
$(2020)/
kW

Model 
floor 
cost, 
$(2020)/
kW

Year 
model 
floor cost 
falsified

2000 Kouvaritkakis et al. 
2000

POLES 13465 2400 2013

2000 Barreto & Kypreos, 
2000

ERIS 13465 757 

2002 Feber et al., 2002 MARKAL 10926 1055 2019

2004 Anderson & Winne, 
2004

E3MG 9975 1691 2016
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Year Paper Model PV system 
price in US, 
$(2020)/
kW

Model 
floor 
cost, 
$(2020)/
kW

Year 
model 
floor cost 
falsified

2006 Bosetti et al., 2006 WITCH 8881 636 

2007 Bosetti et al., 2007 WITCH 8031 618

2009 Bosetti et al., 2009 WITCH 5112 597

2009 Rout et al., 2009 TIMES 5112 2800 2013

2010 Edenhofer et al., 
2010

IMAGE 6004 1485 2017

2011 Luderer et al., 2011 REMIND 4891 758 

2012 Bibas et al., 2012 IMACLIM 4628 1121 2017

2012 Bibas et al., 2012 IMACLIM 4628 1958 2014

2014 Criqui et al., 2014 POLES 1952 1212 2017

2015 Luderer et al., 2015 REMIND 1567 545 

2016 Witch, 2016 WITCH 1610 541

2017 Creutzig et al., 
2017

REMIND 1040 238 

 ● Improving the estimation of technology costs

It is vitally important that energy models undergo rigorous testing and validation to ensure 
their outputs can be relied upon. As described here, even basic attempts to assess the 
historical veracity of major energy models and IAMs reveal that they have consistently 
provided output at odds with empirical trends. This is a serious problem as it implies 
potentially critical areas of scenario space have simply not been explored (e.g., those with 
very high deployment of solar, wind, EVs and green fuels such as hydrogen and ammonia). 
This in turn is problematic because it means that policy makers and investors seeking to 
develop strategies to combat climate change are consistently told that certain types of 
future scenario are expensive or impossible, when in fact they may not be.

The problem is now obvious, as technology costs repeatedly fall through floor cost 
limits set by modellers, and the real energy system continues to develop clean energy 
technologies faster than any of the models thought was plausible. 
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The inconsistency is well known by now for PV, but there is a real risk that current model 
outputs regarding grid battery storage, EVs, electrolyzers, and potentially other hi-tech, 
clean, fast progressing technologies, will be proven similarly flawed in future, and worse, 
may be holding back their progress now, by unnecessarily lowering expectations.

Much greater attention must be paid to using empirically grounded approaches for 
technology forecasting, such as those described in Lafond et al. 2018. There is clearly a 
balance between model realism, which results in increased model complexity, and model 
reliability, which demands lower complexity. Evidence suggests that large energy models 
have been, and perhaps still are, putting too much weight on aiming for realism, but in 
doing so are unable to capture basic technological trends – trends that may well end 
up rendering all their scenarios obsolete. We now proceed to consider how to build an 
energy model, from the bottom up, around empirically grounded technology forecasts.
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Section 3: A probabilistic 
technological change model for 
estimating the cost of the global 
energy transition

 ● Introduction

Given the difficulties the major mitigation models have experienced with incorporating 
the pace of clean energy technological change into their scenarios, the question is, what 
might climate mitigation scenarios look like if they did not suffer such difficulties? This 
report provides a first pass at answering this question. 

To do so, we develop two contrasting scenarios that allow us to quantify the relative 
impact that technological change could have on climate mitigation efforts. The scenarios 
are identical in underlying energy service demand, but very different in the direction taken 
by the global energy system. In one scenario, the current expansion of clean technologies 
already underway is stalled, and there is very little change in the energy mix going 
forward. In the second scenario, decisive action is taken to maintain current technological 
trends, continuing the currently high deployment rates and subsequent learning-by-doing 
in renewable technologies. Each scenario is named based on this narrative and can be 
summarised as follows:

Stalled Transition scenario:17 The transition to clean technologies is stalled, and 
the current energy mix prevails long term, meaning that the relative size of all energy 
sources is maintained approximately constant at their current values. Total useful energy 
increases at 2% per year, be that through economic growth or population growth or other 
drivers of demand. Final energy remains high because only a limited proportion of the 
global system is electrified. This is designed to be counterfactual to the second scenario 
and is a viable scenario in its own right, given that it matches particularly well to the IPCC 
scenario with the highest economic growth and the highest emissions (SSP5-RCP8.5 
Baseline).

Decisive Transition scenario:18 Current growth rates in clean energy renewable 
technologies continue for the next decade, then gradually relax back to the low system-
wide rate. Within 25 years fossil fuels are displaced from the energy sector, with all 
essential fuel use replaced by “green” hydrogen-based fuels. 

17 This scenario is named the No Transition scenario in (Way et al., 2020).

18 This scenario is named the Fast Transition scenario in (Way et al., 2020).



49

Solar and wind provide most of the energy, transport is mostly electrified, and reliable 
electricity is maintained using energy storage based on batteries and hydrogen-based 
fuels. To provide a like-for-like comparison with the Stalled Transition counterfactual, 
useful energy also grows at 2% per year. 

These scenarios are not generated using least-cost optimisation methods (as this is 
computationally intractable) but are instead manually configured to match their narratives. 
They are, however, both physically feasible within the solution space of our empirically 
grounded model. It is difficult to imagine a higher emission scenario than the Stalled 
Transition, given the renewables deployment rates that have been observed historically. 

This section of the report provides an overview of the Probabilistic Technological Change 
(PTEC) forecast model used to generate these scenarios. The layout of this section is as 
follows. First, a non-technical overview summarises the modelling approach and outlines 
the critical areas of departure from other major energy system models (described 
in Sections 1 & 2). Second, we provide a more technical description of each model 
component and the assumptions they embody. This includes discussing key dynamics, 
such as the representation of endogenous technological change and managing the 
intermittency problem associated with renewables. Third, we present more detail on how 
the above two scenarios were constructed using PTEC.

The main design principles of the PTEC model are simplicity and transparency, so we are 
keen to ensure readers can engage with the model’s construction and its implications. 
When technical terms arise, we attempt to provide intuitive examples, for clarity. Readers 
are also invited to consult the Glossary at the end of the report. Despite its simplicity, 
there is still a great deal of detail to the model and the assumptions underpinning its 
development, which cannot be fully covered in this report. Our aim here is to provide 
sufficient detail to convey the legitimacy of the approach, and to give an overview of 
how the scenarios used for this analysis are constructed. Those interested in a more 
substantive description of PTEC are directed to (Way et al., 2020), which provides a 
thorough account of how the model was developed. 

 ● The PTEC Energy System Model

A simple and transparent model for forecasting technological change 
in the global energy sector

As outlined in Section 2, the PTEC model seeks to distinguish itself by offering a simple 
and transparent methodology for forecasting technological progress in the energy sector. 
This contrasts with the “crowded landscape of model-based analyses that can overwhelm 
decision-makers with their complexity” (DeCarolis et al. 2017, pp. 185). To achieve this, 
several simplifying assumptions are necessary, but care is taken to ensure all such 
assumptions are empirically grounded. When a deliberate choice is required, the model 
generally takes a conservative approach (i.e., on the pessimistic side, regarding costs and 
progress of new clean technologies compared to fossil fuels). Hence, the results likely 
understate the true cost-saving potential of a ‘green’ technology transition.



50

The model consists of 22 components that directly cover 83% of all final energy use 
and 82% of energy CO2 emissions. This includes the most common fossil fuels (oil, coal, 
gas), renewables (solar, wind, hydrogen, hydropower, biopower), and nuclear power. 
It does not include several potential but currently still nascent technologies, such as 
carbon capture and storage (CCS), second-generation bioenergy, small modular nuclear 
reactors, or new geothermal energy, because these technologies are all unnecessary to 
prove our main results. It also does not assume any conversion efficiency improvements, 
or how efficiently energy gets transferred from its production source into its end-use 
consumption. 

Whilst we do not explicitly allow conversion efficiency improvements for individual 
technologies in our scenarios, we still allow for total system efficiency gains via switching 
between technologies. For example, fossil fuels generally contain a high energy density, 
however converting fossil fuels to electricity involves a significant loss of energy in power 
stations, mostly as heat. In a few circumstances some of this lost energy can be utilised, 
such as in combined heat and power systems, or district heating, or industrial heat usage, 
but most often it merely radiates away. On the other hand, renewables have relatively 
low efficiency in converting natural irradiance or wind energy to electricity. But once the 
electricity is generated, there is little energy lost from its generation to consumption. 
This simple but substantial gain is extensively exploited in our most ambitious Decisive 
Transition scenario.

Assuming useful energy grows at the same rate in both our scenarios is advantageous 
for two reasons. Firstly, it allows for easier comparison across scenarios because we 
compare like-for-like on a “level playing field”. Secondly, this assumption allows us to 
contrast our ambitious scenario with the high ambition scenarios of other major mitigation 
models which assume considerable energy demand reductions. This is not to say we 
do not agree with demand management approaches. There are many possibilities for 
innovation, efficiency increases, and improvements on the demand-side. For example, new 
technologies might allow us to achieve more economic growth from the same amount 
of useful energy or at a much cheaper rate than the solutions we provide in the Decisive 
Transition. However, we do not require such demand reductions in this report for our 
headline results.

To ensure that the scenarios are sufficiently realistic, the model includes some additional 
constraints and adjustments. This involves verifying that any predicted growth rates of 
technologies are in line with current trends and do not have any unreasonably sharp 
increases, which could be the case when applying a consistent 2% annual growth in 
useful energy. Indeed, the technology growth rates in the two scenarios presented are 
less than or equal to their most recent observed rates. Thus, even in our most ambitious 
scenario, there is no reliance on an increase in renewable energy deployment above 
current trends. In fact, it is gas electricity (the slack variable) that needs to temporarily 
grow above historical trends to meet our 2% growth in useful energy demand. For 
renewable technologies, we only make the simple assumption that they continue to grow 
at or below their current exponential rates for roughly the next decade and then taper off 
once they become the dominant energy source.

To ensure the feasibility of the renewable transition, an additional requirement for storage 
capacity availability is put in place, reflecting the most up to date scientific evidence 
available. 
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This is enacted to manage the intermittency of solar and wind energy generation, which 
can fluctuate significantly depending on location, time of day, season, and year. For 
example, Solar PV installations can produce a surplus of energy during the day but a 
deficit during the night. To overcome this “intermittency problem”, large amounts of 
electricity must be curtailed (over-build) or excess energy stored and dispatched when 
needed. Therefore, the Decisive Transition scenario requires a clearly defined scale-up of 
storage technologies to match any increase in variable renewables. This storage is added 
in several forms including short-term batteries, multi-day battery storage, and long-term 
power-to-X (P2X) fuels (where X stands for chemical storage such as hydrogen, ammonia, 
or methanol).

Outside of these constraints, there are no other requirements that the PTEC scenarios 
must fulfil, such as real-world obstacles like political opposition, the pace of decision-
making processes, or land use concerns. PTEC also examines the global energy system 
overall, not looking at differences between individual regions or the availability of suitable 
sites. However, these factors are all modelled implicitly, via choices of variables that 
accurately reflect historical technology trajectories. These are clear limitation of the 
PTEC model, some of which we address in Section 5, but they enable the model to be 
kept much simpler and more transparent – addressing one of the clear limitations and 
criticisms of the major mitigation models. The purpose of the PTEC scenarios is to 
examine what is technically possible. Ultimately, the choice to achieve a decisive transition 
to a clean energy future will rest with our global decision-makers and their ambition for 
change and not just in the technologies they have available to them.

 ● Components of the PTEC model

As discussed previously, a key distinguishing feature of the PTEC model is that it is 
designed to be simple and transparent. Simplification does, however, come at a cost. 
Most of the global energy system is covered in as accurate a form as possible in the 
model, encompassing around 83% of final energy. 

The aggregated components that are included are as follows:

• 3 direct-use primary energy resources: oil, coal, and gas

• 7 electricity generation technologies: coal, gas, nuclear, hydropower, biopower, wind 
and solar PV

• 5 energy carriers: oil, coal, gas, electricity, P2X fuels

• 3 storage and conversion technologies: daily-cycling batteries, multi-day storage, 
electrolysers

• 3 end-use sectors of the economy: transport, industry, and buildings

Energy is supplied by three direct-use resources and seven electricity generation 
technologies. Note that coal and gas can be used directly or to generate electricity. 
Energy from these ten sources flows into the intermediate energy sector, via one of the 
five carriers, where conversion and storage happen. 
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Finally, the energy is used on demand in three economic sectors: transport, industry, and 
buildings (including residential). This simple specification currently accounts for 97% of 
electricity generation, 83% of all final energy, and 82% of final energy CO2 emissions. 
Making the reasonable assumption that traditional biomass will remain close to carbon-
neutral over its lifetime, the amount of final energy CO2 covered even increases to 93%.

Energy system omissions

Note that this model does not cover the non-energy sector. However, in developing 
emissions scenarios to match those presented for the IEA and IPCC scenarios, we have 
added non-energy sector emissions estimates to allow like-for-like comparison. This is 
explained further in Appendix C and the results presented in Section 4.

Some energy sources and carriers were omitted from the model to maintain its simplicity. 
In general, components were either omitted because (i) the component is small and thus 
negligible or (ii) there is little verifiable data to suggest that this component will grow 
significantly in the future. Details are provided in Appendix C and Way et al. (2020) but in 
short they include examples such as biomass for cooking and biofuels in building energy 
use. These components are added on to the modelling results in post-processing (see 
Appendix C for details) to equilibrate our results with those of the IEA and IPCC, but for 
simplicity they are not explicitly included in the model. It is important to note that these 
simplifying assumptions are generally conservative, providing a cost/emissions advantage 
to fossil fuels. For example, the largest omission (9.9% of useful energy) is intermediate 
fossil fuel usage — whereby fossil fuels are needed to generate even more fossil fuels 
(e.g., powering coal mines). By excluding this, fossil fuels are modelled here as more 
efficient than they are in reality. Hence, fewer CO2 emissions will be attributed to them for 
any given amount of useful energy produced. 

Primary, final, and useful energy

The concepts of primary, final, and useful energy are helpful in energy system modelling, 
but they can also be a source of confusion. The general idea is that as primary energy 
(e.g., embodied in crude oil, coal, and wind) is extracted from nature and delivered to 
consumers, some of it is lost before reaching this end-use sector as a final energy source 
(gasoline, electricity). Moreover, energy gets lost when consumers try to use it in the end-
use sector (e.g., powering transport, heating buildings, communications). That is, not all 
the final energy supplied becomes useful energy. 

To give an example, consider a consumer wanting to power their car. To fuel an internal 
combustion engine vehicle (ICEV), crude oil (primary energy) must be refined into 
gasoline (final energy) which is then supplied to the car fuel tank. There is an energy 
loss associated with the production, refinement, and distribution of crude oil as gasoline 
(Brandt, 2011) but the primary energy associated with the gasoline is by convention the 
energy embodied in the crude oil required to make it. The ICEV converts only around 20-
40% of this embodied energy from the gasoline in the tank (final energy) into the motion 
for the vehicle (useful energy). The remainder is mostly lost as heat. By contrast, electric 
vehicles (EVs) convert the energy in their batteries (final energy) into vehicle motion 
(useful energy) at closer to 80% efficient. 
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What matters in terms of calculating CO2 emissions for these two types of cars is the 
primary energy used to supply the useful energy of the vehicle, and the carbon intensity of 
that primary energy. For this reason, it is important to know the source for the electricity 
used to charge the EV battery. If the EV is powered by electricity generated from a 
coal-fired power station, then only around 35% of the total coal used (primary energy) 
will get converted to electricity (final energy), resulting in the EV potentially producing 
more emissions than an efficient ICEV. If the EV is powered by electricity sourced from 
renewables (primary energy), the only losses are some line losses in the electricity grid, 
and the CO2 emissions are minimal. 

In calculating emissions, the concept of primary energy is therefore helpful. However, the 
concept of primary energy is a somewhat non-sensical for technologies like solar PV, as 
the primary energy is not defined as the sun’s radiant energy. The primary energy reported 
for renewables like wind and solar is by convention calculated using a 100% conversion 
factor between final energy and useful energy. The conversion rates used in this report 
match this convention and those of the IEA (2019). 

In calculating costs of the energy system, what is most relevant is the final-to-useful 
energy efficiencies and how much investment in energy generation infrastructure is 
required to reliably supply the final energy needed to deliver the useful energy that is 
demanded by the global economy. If the cost of delivering this final energy for the whole 
system is the same for a renewables-plus-storage-based energy system as a fossil-fuel-
based energy system, then the system that requires less final energy to deliver that useful 
will be cheaper (ignoring discounting). A significant portion of the Decisive Transition’s 
cost savings can be attributed to such efficiency savings brought about by widespread 
electrification.

 ● Deploying technologies in the PTEC Model

Experience exponents across technologies

Renewable energy sources, particularly solar PV, have the potential to become a cheaper 
source of electricity generation than fossil fuels. In many places, they already are (IEA, 
2020c). In Section 2, we outlined how endogenous technological change suggests 
the potential for cost-saving from renewable energy is most significant when it is 
widely deployed globally. Yet, many existing models of the global energy system do not 
incorporate this critical dynamic. Some insert explicit constraints on new technologies, 
such as price floors, below which their prices cannot fall (Cian et al., 2016).

PTEC instead classifies technologies depending on whether their costs have remained 
approximately flat or declined over recent decades as they have become more widely 
deployed. This indicates where we can expect cost-savings in the future. As Section 2 
showed, fossil fuel costs (direct-use oil, coal and gas; plus, coal- and gas-fired electricity) 
have remained relatively flat and are thus put in the first category. All other technologies 
are placed in the second category, where we apply the probabilistic forecasting approach 
developed by Lafond et al. (2018) to identify their historical “experience exponents”. This 
is shown in Figure 3.
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Note that the trend for nuclear power is somewhat less clear, varying a lot by country 
and might even have increasing costs through time due to safety concerns and public 
acceptability issues. Hence, in PTEC, we simply set its experience exponent to 0%, 
noting that nuclear energy does not become a dominant component in either of our two 
scenarios.

By applying historical trends in deployment rates, the PTEC model opens up a solution 
space in the climate mitigation story currently not well explored. For scenarios where 
there is a continuation of the transition towards renewable energy, the vast room for 
deployment still available means that a lot of ‘experience’ can be acquired with the 
potential for continuing cost reductions.

• Figure 8: Experience exponent parameters of key technologies used in PTEC. Source: (Way 

et al., 2020).

The uncertainty of future costs

To forecast future costs, it is critical to incorporate elements of the uncertainty inherent 
in such forecasts. In terms of the technology costs presented in PTEC, we differentiate 
between two sources of uncertainty. The first source of uncertainty is unanticipated 
future shocks, which remain inherently unknowable. For example, a sudden shortage in 
the raw materials needed to produce PV cells. Secondly, there is uncertainty around the 
“true” functional form of the experience curve relationship – that is how much each unit 
of cumulative production affects costs for a specific technology. Our historical estimates 
in Figure 3 may rely on imperfect data or change going forward. Thus, the model takes a 
stochastic approach, whereby we estimate our equations using historical data and include 
these two sources of randomness. Repeating this hundreds of thousands of times for 
each scenario, we have a range of different possible outcomes that can then be used to 
construct confidence intervals. Technical details of this are described in Appendix B and 
in Way et al. (2020). 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Battery (Li-ion)

Solar PV

Electrolysers

Battery (Flow)

Wind

Biopower

Hydropower

Nuclear

0.342

0.303

0.194

0.168

0.158

0.05

0

0



55

Managing the intermittency problem

To make extensive use of variable renewable energy (VRE), it is critical that storage 
capacity also grows to insure against fluctuations in output (Barron & McJeon, 2015). 
Apart from cost considerations, this has been seen as the main obstacle to a large-
scale ‘green’ transition. It is most pertinent for overcoming the daily solar cycle (Shaner 
et al., 2018) and to a lesser extent, wind. Measures are required to overcome these 
daily fluctuations and more extended periods of change that may be caused by natural 
weather patterns, seasonal changes, and inter-annual variability.

To address this issue, PTEC uses three modelled storage technologies, all of which 
have sufficient historical data from which to infer trends: lithium-ion batteries for short 
timescales, redox flow batteries for intermediate timescales, and P2X fuels for long 
timescales. We have seen in Figure 8 how these appear to follow Wright’s Law and 
have favourable learning rates – like the renewable technologies that they are meant 
to complement. These three technologies are not necessarily the cheapest solution to 
store energy; we propose that they merely are a solution. This follows our conservative 
approach, acting as a possible upper bound on costs. 

For each storage technology and each end-use sector, a constraint is placed so that at 
least a set fraction of energy can be stored. Under the Decisive Transition scenario, we 
require that short-term and multi-day batteries respectively hold 20% and 10% of average 
daily electricity generated by wind and solar in the power grid and transportation sectors. 
Additionally, we require that there be enough P2X fuel stored to cover one month’s worth 
of end-use electricity each year. Since none of these storage technologies is yet widely 
used, it would be unrealistic to allow them to jump up straight to this fraction. Instead, 
the installed storage capacity first grows at a gradual rate, determined using existing 
historical data, until the constraint is met.

To make use of this storage capacity, we also need to have the ability to store a portion 
of the energy produced in excess of demand. Under the Decisive Transition, we build up 
an overcapacity in solar PV and wind to be able to generate 100% of aggregate annual 
final electricity by 2040, whilst still only accounting for 82% of the generation mix. This 
creates a large amount of surplus energy that can be stored.

We believe that this combination of high storage capacity and over-supply of dispatchable 
energy allows the Decisive Transition scenario to provide very high levels of reliable 
energy supply, which are above regulated requirements (99.97% in the US). We may also 
imagine how interconnectors here will play a substitutable role, in allowing electricity 
to flow across different grids – although this is not explicitly modelled here to maintain 
simplicity. 

The explanation provided here on the PTEC model is a very brief overview. Readers 
interested in investigating the model in more detail are encouraged to refer to the much 
more comprehensive explanation in (Way et al., 2020).
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 ● The two PTEC energy transition scenarios

Constructing a scenario in PTEC

Despite its simplicity there is an almost infinite set of scenarios that could be constructed 
using the PTEC model, which must somehow be systematically narrowed down. For this 
report, we required scenarios that are (i) physically feasible given current trends, and (ii) 
allow for meaningful comparisons with each other, (iii) provided insights regarding the 
potential for our alternative approach to technology forecasting to be contrasted with the 
scenarios of the major mitigation models of the IEA and IPCC. 

Many other studies rely on least-cost optimisation to produce scenarios, finding the 
lowest possible cost or emissions scenario out of an incredibly large possible set. 
However, this approach has been criticised for not reflecting real-world energy transitions 
(Trutnevyte, 2016) and is also very computationally intensive. Instead, to generate its 
scenarios the PTEC model essentially works ‘backwards’, using a few simple rules that 
constrain the supply, growth, and substitutability of technologies, to enable deployment 
of technologies to determine costs, in line with the probability distributions taken from 
historical trends.

To achieve this the PTEC model first fixes how much useful energy the global system 
will demand in the future, making the stringent assumption for both scenarios presented 
here, that every sector will continually grow their useful energy at 2% per annum. That 
is, there is no slowdown in energy demand from average historic levels, and therefore no 
requirements for economic growth to decline. By contrast, many other model scenarios 
that achieve net-zero emissions in the 21st century, necessitate a dramatic reduction in 
energy demand or a slowdown in economic growth. In doing so, they must make strong 
assumptions on demographic, economic, or policy changes to achieve the required 
drastic turn-around in global emissions.

There are multiple reasons to fix the growth rate of energy demand directly for both 
our scenarios. For one, it allows us to make a clear like-for-like comparison. Because 
each scenario must produce the same amount of useful energy, we can clearly 
distinguish other key differences between these scenarios, particularly in regards to 
technologies and policy, rather than being skewed by an implicit trade-off between CO2 
emissions and GDP. Additionally, our approach can be interpreted as imposing a strict 
conservative condition, in line with the model’s overall conservative approach. Our ‘green’ 
Decisive Transition scenario must achieve its aims only through supply-side solutions, 
rather than relying on demand-side innovations or limiting economic growth. In some 
cases, demand reduction efforts will be very cheap and efficient, as shown with the 
widespread adaption of LED lighting (Creutzig et al., 2018). By making such strict and 
conservative assumptions regarding demand management, we are able to better test the 
relatively untouched area of the climate mitigation solution space involving probabilistic 
technological change forecasting (see Section 2).

Having fixed energy demand, the second step is then to specify the final carrier mix in 
each sector and the technology mix that supplies these carriers. For example, this would 
include determining how much electricity the transport sector demands versus oil and 
where that electricity is generated. 
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Any combination of energy technologies that meet these carrier constraints each year 
(and thus global demand) is theoretically a valid scenario in PTEC. Hence, it is crucial to 
ensure that the implicit growth rates specified here are consistent with current trends. 
This is thus reviewed again in the last step.

The third step is to place further constraints to address the ‘intermittency problem’ with 
any variable renewables (VRE), as described above. In PTEC this constraint requires 
that the adoption of solar, and wind energy must always be accompanied by significant 
increases in storage capacity to reliably provide dispatchable energy when making up 
a medium to large proportion of the global energy supply. This cap means implicitly that 
the cost of VRE deployment relies on growth in batteries, P2X fuels, and electrolyser 
technologies, which themselves have their own growth rates and cost declines based on 
empirical trends.

Lastly, given the final carrier and electricity mix, we then calculate the exact growth rate 
and length of time needed to achieve this mix from current levels. To ensure these growth 
rates are feasible, they are smoothed out to follow a general S-curve and adjusted to 
avoid unrealistically sharp transitions, using historical data as a reference. The energy 
storage requirements to deal with the ‘intermittency problem’ may further bind these 
growth rates. Further information on the details of this methodology can be found in Way 
et al. (2020).

Through this four-step process, we develop our two contrasting scenarios, each having 
very different final mixes and thus different growth rates of associated technologies, but 
each consistent with a set of explicit constraints based on physical limits and historical 
trends.

The Stalled and Decisive Transition Scenarios

Having outlined above how we construct scenarios generally; we provide more details on 
the Stalled Transition and the Decisive Transition scenarios, which are the focus of this 
remaining sections of the report and are assessed and discussed in contrast to other 
major climate mitigation scenarios. 

The Stalled Transition scenario

This scenario represents a minimal change to the current energy system. That is, we 
assume that the current high rate of deployment of renewable energy technologies is 
stalled, slowing down over the next decade to the system-wide growth rate, and fossil 
fuels supplies continue to grow to meet global energy demand. 

Such a scenario means that fossil fuels continue to meet most of the annual useful 
energy growth of 2% per annum across all sectors. By contrast, wind and solar PV 
generation respectively grow at a low 8% and 4% for a decade, before falling to 3% per 
annum. In such a scenario, solar and wind’s electricity generation share falls from their 
current 7% to less than 2% over the next 50 years. Without the impetus of dispatchable 
renewable energy, there is no need for P2X fuels or battery technologies to take off. 
Note that, to begin with, daily batteries still grow at 2% per annum, in large part due to 
electrification of the transportation sector (i.e., EVs), which occurs even under this general 
slowdown.
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It is worth emphasising just how extreme these decreases are. For reference, solar PV 
has seen an annual growth rate of 42% over the past 30 years, so even growing at 8% 
over the next decade is a significant downward revision. This is also a good illustration 
of why we call this a Stalled Transition, rather than “business as usual”. Trends are not 
passive, but there is an active slowdown of multiple promising energy technologies.

Even if this scenario is not considered a realistic depiction of what we expect to happen 
in the future, we use it as our baseline due to several useful properties. We can compare 
other transition scenarios against it, essentially representing a stalling of current growth 
trends, freezing the energy system in its current configuration, and assuming pro-rata 
growth of technologies to match the 2% increase in total useful energy demand. Also, 
as Section 4 will demonstrate, this Stalled Transition scenario is very similar in terms 
of emissions and energy mix in 2070 to the SSP5-RCP8.5 scenario – a scenario that 
was initially seen as a “business-as-usual” but is now regarded more as a “worst-case” 
scenario – allowing us to contrast our results more easily with those of the IPCC.
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The Decisive Transition scenario

In this scenario, investment in clean technologies with a high historic reduction in costs 
is pushed decisively and globally. These technologies grow at rates consistent with their 
recent historical trends until they become dominant and slow down to the system-wide 
rate. 

Solar PV dominates due to its consistently steep experience curve. It grows at 32% per 
annum for the next decade, before descending to 10% per annum by 2040, and the 
system-wide 2% per annum by 2045. Likewise, wind grows at 20% per annum for the 
next decade, before declining to reach 6% by 2040, and the system-wide 2% per annum 
by 2045. This scenario subsequently sees solar and wind account for a substantial share 
of the energy mix by 2040. At this point, 90% of electricity will be generated from zero-
carbon sources, and 81% of final energy is provided by zero-carbon sources, rising to 91% 
in 2050 and 97% in 2060.

The rise in variable renewables is met by a rapid increase in storage capacity to 
manage the intermittency problem. This sees a temporarily initial spike in the 2030s 
when capacity needs to be drastically built up to match the rise in renewables’ storage 
requirements. These technologies’ deployment rates are around 60% for these initial 
decades, which is high but below current rates. This is not unusual in the early phase of 
technologies where deployment is orders of magnitude lower than where it might end up. 
By 2040, enough short-term battery capacity exists to store and shift 20% of all solar 
and wind electricity generated each day. Likewise, there is enough multi-day storage to 
hold 10% of daily solar and wind generation. Enough P2X fuel is produced to cover one 
month’s worth of solar and wind’s contributions to the power grid if there is an extended 
lull in output due to the natural seasonal or inter-annual variation of these sources.

Overall, the rise in renewable energy – enabled by a rapid scale-up in storage 
technologies – allows for the global energy system’s deep decarbonisation. Fossil 
fuels are displaced from all sectors by 2045, mostly through electrification, including 
replacement of difficult to electrify sectors with electrolytic P2X fuels (particularly in 
industry and transport). Oil consumption falls dramatically due to the rapid electrification 
of transportation. 

This is one of the first significant transitions in this scenario because, while EVs grow 
at a similar rate to the other storage technologies, they start from a much higher level, 
so reach mass scale sooner. After five decades of sustained 2% growth of transport 
services, final energy in the sector is still below current levels due to the much higher 
efficiency of electric vehicles.

This scenario results in a global energy system that is very different from the one we 
currently have. This change is drastic in every way – in terms of the pace of change. Yet, 
as we have detailed throughout this section, the growth rates embodied in this scenario 
are close but lower than those experienced in the past few decades. As Section 4 will 
illustrate, the Decisive Transition suggests that simply sustaining the status quo will bring 
about a revolutionary change.
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Section 4: Comparing our 
emission scenario projections  
with the IEA and IPCC scenarios, 
to 2040 and beyond

 ● Introduction 

Having outlined the Probabilistic Technological Change model (PTEC) in Section 3, we 
can now compare the results of the Decisive and Stalled Transition scenarios to some 
of the leading climate mitigation scenarios used by policymakers. For this comparison, 
we focus chiefly on models by the International Energy Agency (IEA), given its leading 
role in modelling the global energy sector, and the most recent scenarios of the 
Intergovernmental Panel on Climate Change (IPCC), being the most prominent and 
respected source for global climate mitigation scenarios.

We will summarise how the PTEC scenarios were equilibrated with the IEA models to 
ensure the PTEC scenarios represent the full global energy system. We then discuss the 
similarities and differences between the PTEC scenarios and those of the IEA. Finally, 
we provide a summary of how these enhanced global energy system scenarios were 
then equilibrated with the IPCC scenario by adding a non-energy system and non-CO2 
greenhouse gas emissions to the enhanced Stalled and Decisive Transition scenarios. 

To convince our readers that it might be worth the trouble reading how our scenarios 
compare to the other mitigation models, we will begin with the headline results – which 
tell a remarkable story. Figure 9 presents the global warming associated with the final 
equilibrated Stalled and Decisive Transition scenarios compared to three key IPCC 
warming scenarios. As we can see our Stalled Transition scenario is most closely aligned 
with what is regarded as the ‘worst-case’ IPCC scenario (SSP5 RCP8.5) and the Decisive 
Transition is comparable to the SSP1 RCP2.6 high mitigation ambition “Taking the Green 
Road” scenario. 

What is remarkable about this image is that it suggests the Decisive Transition achieves 
almost all the reductions in greenhouse gas emissions necessary to match these 
ambitious IPCC scenarios. This is remarkable because, in contrast to the SSP1 RCP1.9 
and SSP1 RCP2.6, it achieves this result without any significant deployment of nuclear, 
carbon capture storage, or energy-saving technologies, and without a reduction in energy 
demand or economic growth. It merely is a result of extending current technological 
growth trends for another decade. 
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• Figure 9: Comparisons of Temperature Anomalies (using FaIR) from the estimated global 

emissions of two PTEC scenarios Stalled and Decisive Transition and three IPCC scenarios 

SSP5-RCP8.5 baseline, SSP1-RCP1.9 and SSP1-RCP2.6.

Despite such an interesting result, the analysis presented here is mostly a comparison 
exercise, to convince our readers of the legitimacy of these results. Where relevant, 
we highlight critical assumptions in the PTEC model that explain its differences from 
other models’ scenarios. An examination of the potential obstacles to the technological 
progress presented in the Decisive Transition being realised and the policy implications of 
this “unexplored solution space” are given in Section 5.

 ● Equilibrating PTEC scenarios with those of the IEA  
and IPCC

As explained in Section 3, the PTEC model focuses on simplicity and thus the energy 
flows included in it only accounts for 82% of current CO2 emissions. To make a 
meaningful comparison with other global energy system models, we need to “add-
in” everything else included in these IEA scenarios. This way, we can ensure that we 
are comparing like-for-like and can focus only on the critical assumptions regarding 
technological change. 
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Appendix C provides a detailed step by step guide to generating emission scenarios 
equivalent to those offered in the IEA World Economic Outlook 2019. In summary, we first 
match PTEC with the various components that make up the IEA global energy system 
and account for any missing parts. We then develop a methodology for projecting these 
missing components into the future in each PTEC scenario. To capture the inherent 
uncertainty associated with such an equilibration process (e.g., differences in assumed 
primary to useful energy efficiencies, regional carbon intensities for specific fuels, non-
energy emissions etc.), we produce bands of emission estimates for each scenario, rather 
than exact values. Although lacking in precision, such an approach allows our readers to 
fully appreciate the uncertainty associated with our equilibrated emissions estimates so 
they can decide for themselves if such uncertainty alters any conclusion we may draw 
from this exercise.

 ● A comparison with the IEA emissions scenarios

Background on the IEA World Energy Outlook

We begin by comparing the future projections of the PTEC global energy system model 
with those of the World Energy Outlook Report (2019) by the International Energy Agency 
(IEA). In particular we focus our analysis on the following two IEA scenarios:

• Sustainable Development Scenario (SDS): This scenario defines a future where 
we hit global net zero in CO2 by 2070 and fulfil the United Nations Sustainable 
Development Agenda’s key energy-related goals. It then works out how to achieve 
such a scenario. The Sustainable Development scenario is the most ambitious 
scenario laid out by the IEA’s WEO 2019 report and thus serves as a useful 
benchmark to our Decisive Transition.

• Stated Policies Scenario (STEPS): This scenario is designed with the intention 
of “holding up a mirror” to the plans and ambitions announced by policymakers. 
It considers only specific policy initiatives that have already been announced and 
projects these forward to 2040. Although this is the least ambitious of the IEA 
scenarios, it is not as pessimistic as the PTEC Stalled Transition scenario. However, 
it does provide a useful benchmark for comparison with more and less ambitious 
climate mitigation scenarios.

As discussed in Section 1, all IEA scenarios rely on identical underlying socio-economic 
scenarios, from which they can then work out energy demand. These include setting the 
growth rate of global gross domestic product (at an average of 3.4% per annum to 2040) 
and population (to around 9 billion people by 2040). This is similar to the PTEC scenarios 
in that both have the same drivers of demand, but different in that the IEA scenarios can 
still have different levels of total energy demand. The PTEC scenarios instead do not 
explicitly specify any macroeconomic outcomes but instead merely maintain a constant 
2% per annum increases in useful energy.
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Primary energy demand

Primary energy is defined as the energy embodied in nature that has not been subjected 
to any human engineering, and is used to present energy demand by primary energy 
source by the IEA. Providing a comparison with these published IEA primary energy 
demand figures is somewhat problematic as electricity made from solar and wind is 
treated differently to other sources of primary energy (as discussed in Section 3). 
However, it is still useful to compare primary energy as the emissions estimates can 
more easily by calculated by simply multiplying primary energy estimates by the emission 
intensities of each fuel. Figure 10 presents a comparison of the global primary energy 
demand by each fuel type for each of the two IEA and two PTEC scenarios. Comparing 
the two least ambitious scenarios (the two left-most graphs in Figure 10), we see that 
both increase primary energy demand linearly. However, the magnitude is somewhat 
different. Under the IEA’s Stated Policies scenario primary energy demand grows by 
approximately 24% to reach 17,723 Mtoe in 2040; under PTEC’s Stalled Transition it 
grows by over 50% to reach almost 21,846 Mtoe by 2040. This is to be expected given 
each scenario construction – in IEA’s Stated Policies scenario, policymakers can at least 
fulfil their current pledges, whilst the PTEC’s Stalled Transition is much more pessimistic. 
It would require an active effort to stifle technological progress. We should also note that 
a 2% increase in useful energy can require a greater increase in the supply of primary 
energy than a 3.4% growth rate in GDP, depending on how efficiently the energy is used. 
This is particularly the case here. The PTEC scenarios do not make any assumptions 
about energy-saving technologies and maintain the final-to-useful conversion efficiencies 
of each fuel type fixed throughout the scenarios (see Section 3 and Appendix A). In 
contrast, the IEA’s Stated Policies scenario contains a tripling of energy efficiency 
investment by 2040. The Sustainable Development scenario relies heavily on energy 
efficiency as the critical policy lever for reducing emissions with the conversion efficiency 
for coal rivalling that of natural gas by 2040. 

Comparing the two ambitious mitigation scenarios (the two right-most graphs in Figure 
10), we see that in both cases primary energy demand generally decreases but with 
significant differences between the two. Under the IEA’s Sustainable Development 
Scenario, the decrease is linear up to 2040, declining by 7% to 13,272 Mtoe. Under 
PTEC’s Decisive Transition, primary energy demand initially falls but then actually 
increases from 2036 onwards. By 2040 it reaches 10,315 Mtoe – a 27% decline, more 
than three times that of STEPS. 

In the Sustainable Development Scenario, energy demand in 2040 is 25% lower than in 
the Stated Policies Scenario due to efficiency improvements in conversion from final to 
useful energy. The lower primary energy demand in the Decisive Transition scenario is 
primarily explained by efficiency gains from electrification brought on by the increasingly 
cheap renewable energy. This is seen across all sectors, but especially transportation. 
Electricity generation from renewables only has moderate losses in converting it to useful 
energy; by contrast, at least half of the primary energy is lost in converting fossil fuels 
to electricity, torque in an engine, or heat. Once deployment in renewables starts falling 
beyond 2040, primary energy demand resumes a steady increase. 
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• Figure 10: Comparing primary energy by energy type to 2040 for the two IEA scenarios 

(top row) and the two PTEC scenarios (bottom row). Note that renewables are represented 

as 100% conversion from primary to final. Source: this report and IEA 2019 (Figure 1.1).

We present the change in the primary energy mix in Figure 10 to match with similar 
figures presented by the IEA in their World Economic Outlook 2019. However, it may at 
first appear somewhat confusing to see total primary energy declining so much in the 
Decisive Transition scenario. This is partly due to the conventions on how solar and wind 
are converted from primary to final energy by the IEA (and UN convention), as discussed 
in Section 3. 
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Final energy demand, and electricity generation in 2040

To get a better understanding of how the energy mix changes through time we can look 
instead at how global final energy changes between the scenarios. Applying the IEA 
conversion factors to each fuel produces the total final energy consumption for each 
scenario through time shown in Figure 11.19 This Figure provides the same information and 
scenarios as Figure 10 with primary energy converted to final energy (including electricity) 
as described above. In the least ambitious scenarios, we see that, as per their definition, 
the mix of all fuel types remain essentially fixed under both IEA’s Stated Policies scenario 
and PTEC’s Stalled Transition, with the former including a modest increase in the share of 
fossil fuels. Turning to the more ambitious scenarios, we see that under IEA’s Sustainable 
Development scenario fossil fuel usages declines by around 25% against 2018 levels 
by 2040. However, fossil fuels decline much quicker in the Decisive Transition scenario, 
supplying less than half the total final energy by 2035 and less than 20% by 2040. 

The comparison of emissions between the two most ambitious scenarios shows that by 
2040 annual emissions in the Decisive Transition are less than half those of the most 
ambitious IEA scenario. The contrast is stronger than Figure 11 suggests because the 
IEA’s Sustainable Development scenario assumes extensive adoption of carbon capture 
and sequestration on coal-fired power stations worldwide, providing coal usage with a 
40% reduction in emissions by 2040 (see IEA (2019) for more details). Such a significant 
global change in coal emission efficiency would be quite expensive and difficult to justify if 
renewable costs get any lower.

Although the transformation of the energy system shown in the Decisive Transition 
scenario may appear drastic, it is merely the continuation of a lower deployment growth 
rate than the exponential growth rate at which it has been deployed over the past 30 
years. For instance, solar PV has experienced an annual deployment growth rate of 42%. 
This rate is assumed to continue at a lower 30% for the next decade before gradually 
slowing down.

Historically, the most widely cited obstacle to non-dispatchable technologies like solar 
PV and wind becoming dominant energy sources was their cost, and more recently, their 
reliability under changing weather conditions. As discussed earlier, this latter obstacle 
is overcome in PTEC by building up storage capacity, first in batteries and then in P2X 
fuels. This dynamic means that the deployment renewables become more expensive for 
a period until storage technology costs decline. This, however, is not the reason for the 
more gradual decrease in total final energy we see in this Decisive Transition scenario 
over the first ten years. The deployment of clean fuels is constrained by the rate of 
deployment for this scenario. As of 2019 growth in renewables is still lower than the 
energy demand growth assumed in the PTEC scenarios, resulting in renewables not being 
able to meet all the demand associated with the 2% p.a. increase in useful energy. For 
this reason, we also see an increase in natural gas during this early period in the Decisive 
Transition scenario, as natural gas acts as a “slack” energy source in the model meeting 
any demands that are unmet by other sources. Thus, the largest increase in renewables 
does not occur until after 2030 (55,000 TWh), once both the deployment in renewables 
and storage technologies is sufficiently large. 

19 We use IEA’s stated primary to final energy conversion factors to convert PTEC scenarios from 
primary energy to final energy, which are: coal 0.496, gas 0.575, nuclear 0.332, bioenergy 0.411, oil 1.0 
(transport), wind & solar 1.0.
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• Figure 11: Comparing IEA vs PTEC total final energy supply by energy type to 2040 2040 

for the two IEA scenarios (top row) and the two PTEC scenarios (bottom row). Source: this 

report and IEA 2019 (Figure 1.1) using IEA stated primary to final energy conversion factors.

Figure 12 provides a comparison of the changes in electricity generation in each of the 
scenarios. This Figure is not presented in the IEA WEO (2019) but is added here to 
show how dramatically the electricity power sector changes in the Decisive Transition 
compared to all the other scenarios. Under the Decisive Transition scenario, renewables 
in 2040 provide over 60,000 TWh of electricity, more than double the total electricity 
generation from all sources in 2018 (26,000 TWh). 
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• Figure 12: Cumulative change in electricity generation to 2040 relative to the 26,560 TWh 

in 2018 for IEA’s Stated Policies scenario and PTEC’s Stalled Transition scenario (left), and 

PTEC’s Decisive Transition and IEA’s Sustainable Development scenario (right).

Change in final energy consumption by scenario

Figure 13 illustrates the levels of final energy consumption by sector for each scenario 
from 2018 to 2040. Again, we can see a stark contrast between the IEA and PTEC 
scenarios. Because each of the PTEC scenarios requires a 2% p.a. increase in useful 
energy, the change in energy consumption in the Stalled Transition scenario is much 
higher than the others. Its focus is on maintaining the use of less efficient fossil fuels. All 
sectors increase in this scenario based on the size of each sector. This is to be expected, 
given the construction of the PTEC scenarios. The reduction in energy demand in the 
IEA Sustainable Development scenario is due to energy efficiency gains over this period. 
The same is true of the Decisive Transition scenario except that for the latter the only 
efficiency gains are from electrification. Unlike the Sustainable Development scenario, the 
PTEC model does not include any changes in conversion efficiencies. 

The energy consumption reductions are most significant in the transport sector for the 
Decisive Transition scenario. This can again be related to PTEC’s scenario construction. 
Remember that the Decisive Transition scenario picks winners. As the storage used in 
electric vehicles is already advanced transportation takes a significant transition towards 
electric vehicles. Electric vehicles are more energy-efficient than internal combustion 
engines and when powered with low-cost renewable electricity in the Decisive Transition 
become cheaper than internal combustion engines within a decade. Therefore, this sector 
sees the largest decrease in energy consumption (1,400 Mtoe). As will be discussed in 
Section 5, this might have implications for transition risk and the stranding of assets in 
this sector.
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• Figure 13: Comparing the change in final energy consumption by sector between 2019 and 

2040 in the IEA 2019 (Figure 1.4) and PTEC scenarios.

Cost per MWh by technology across scenarios

Whilst there are large upfront investments in renewable energy and storage technologies 
in the Decisive Transition, we can also see considerable savings over the long-term. 
This is illustrated in Figure 14, which traces out the median forecast LCOE for both 
PTEC scenarios (we could not obtain full data to compare LCOE costs to those used 
by the IEA). As explained in Section 3 and Appendix B, the technology cost forecasts 
are generated stochastically 100,000 times based on the historical record, and so we 
present the median value here. This illustrates the “learning-by-doing” dynamic that PTEC 
explores through calculating future costs based on technological progress (see  
Appendix A). 

One purpose in presenting this information is to demonstrate the influence of deployment 
on cost in PTEC, with more learning leading to greater potential for cost savings per 
unit of energy. Thus, as there is considerably more deployment of Solar PV and wind in 
the Decisive Transition than in the Stalled Transition scenario, we see their respective 
LCOEs falling by more in the former. For Solar PV, the final cost is $30/MWh in the Stalled 
Transition in 2040 and only $15/MWh in the Decisive Transition. For wind, the final cost is 
$40/MWh in the Stalled Transition in 2040 and only $35/MWh in the Decisive Transition. 
This is a simple concept, but one that is consistent with the empirical evidence (Farmer & 
Lafond, 2016) and the key differences that separate the PTEC results from those of the 
IEA and IPCC (Creutzig et al., 2017).
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• Figure 14: Median global forecast costs of various technologies in the two PTEC scenarios 

showing the contrast in improvements that arise when more solar PV and wind are deployed 

in the Decisive Transition scenario.

Annual emissions by fuel 

Finally, we will compare how each model fairs in terms of greenhouse gas emissions. 
That is, how including a more probabilistic-based appraisal of technological progress, or 
lack thereof, might translate into greenhouse emissions and eventually global warming. 
Figure 15 provides a graphical representation of the emissions associated with each fossil 
fuel source in each scenario. Comparing the two sets of low ambition and high ambition 
scenarios from this perspective shows the two pairs to be remarkably similar. The two 
PTEC scenarios lie on either side of the IEA scenarios in terms of cumulative emissions, 
and consequently have a larger impact on climate change, but not by much. 

The IEA Sustainable Development scenario and Decisive Transition, both achieve around 
2,000 Gt CO2 by 2040. Both will therefore see a similar impact on global warming by 
2040. However, remember that these two scenarios have very different strategies and 
likely very different costs. For the IEA Sustainable Development scenario, the reductions 
are gained through extensive demand reduction, with final energy consumption, some 
2,000 Mtoe lower than the Stated Policies scenario (as shown in Figure 15). There is also a 
somewhat remarkable reduction in the emission factors from some fossil fuels, particularly 
coal, which by 2040 is on par with natural gas in terms of global tonnes of CO2 emitted per 
Mtoe of energy. This is achieved either through retrofits, carbon capture and storage or 
through co-firing with biomass (IEA, 2019), both of which are quite expensive options and 
would struggle to compete with renewables today, let alone in 2040. 
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By contrast, PTEC’s Decisive Transition scenario allows an increase in energy demand 
and does not rely on any new and technologies that have not been tested at scale, like 
carbon capture and storage. Instead, as we have documented throughout this section, 
this scenario reduces emissions through a drastic shift towards renewable technologies, 
enabled by endogenous technological change. The electricity would be considerably 
cheaper in the Decisive Transition scenario (as suggested by the renewable energy costs 
shown in Figure 14), which can lead to a “rebound effect” and increased electricity demand 
(Gillingham et al., 2016).

• Figure 15: Comparing IEA and PTEC annual global energy system emissions by fossil fuel 

type (left axis) and total cumulative emissions (yellow shading – right axis) to 2040. Source: 

this report and IEA 2019 (Figure 1.6).

Although the fuel emission time-series of the Decisive Transition scenario look steeper 
and ends at a lower annual emissions level, the cumulative emissions over this time are 
quite similar. This is mainly because whereas the combined emissions go down steadily in 
the IEA Sustainable Development scenario from 2018, they initially increase in the Decisive 
Transition scenario because natural gas is used to maintain the 2% p.a. growth in useful 
energy while renewable and storage production ramps up. The benefit is that by 2040 the 
annual emissions are much lower going forward in the Decisive Transition scenario.
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Total global energy system cost comparison

Although not the key research question being examined in this report it is likely that the 
reader is curious to know whether there might be a cost benefit associated with the 
Decisive Transition scenario. We lack the information necessary to compare the cost 
of the PTEC scenarios with the IEA scenarios, however Way et al. (2020) provide a 
comprehensive total energy system engineering cost comparison between the Decisive 
Transition (fast transition) and the Stalled Transition (no transition) scenarios. Using the 
1.4% discount rate promoted in the Stern Review (2006), they estimate the expected net 
present savings of the total engineering cost of the Decisive Transition over the Stalled 
Transition would be roughly $6 trillion by 2040 and $11 trillion by 2070. Those interested 
in gaining a better understanding of how such estimates are calculated are encouraged to 
examine the details provided in Way et al. (2020).

 ● Comparison to IPCC future emissions scenarios

The IPCC Scenario Matrix

As discussed briefly in Section 1 (and in further detail in Appendix C), the IPCC present 
their emissions scenarios in the form of a Scenario Matrix that combines the Shared 
Socio-economic Pathways (SSP) with their impact on global warming represented by the 
Representative Concentration Pathways (RCPs). The SSPs provide scenarios of possible 
future developments of emissions and their main socio-economic drivers and include 
projections of different growth rates of population, urbanisation, and GDP per capita. 
Depending on the amount of climate ambition applied to each of these SSPs (in the form 
of a social price on carbon), they are made to achieve the warming levels associated with 
each RCP.

As the PTEC model does not use an underlying socio-economic scenario and the IPCC 
use many, it is quite challenging to compare the two in a like-to-like fashion as we did with 
the IEA scenarios. However, the sets of SSP-RCP combinations that appear closest to 
our Decisive and Stalled Transitions scenarios in terms of emissions are SSP1-RCP2.6 
and SSP5-RCP8.5, respectively. Under SSP1 Sustainability (Taking the Green Road), 
the world population grows at 0.98% p.a. to reach 8.24 billion people by 2100 (Riahi et al., 
2017). The global GDP per capita increases for this scenario is the lowest of all with the 
highest rates experienced in the developing countries (Dellink et al., 2017). Under SSP5 
Fossil-Fuelled Development (Taking the Highway), the world population grows at 1.21% 
p.a. to reach 8.47 billion (Riahi et al., 2017), whilst GDP per capita grows seven-fold by 
2100 (Dellink et al., 2017). In their Baselines (no explicit climate ambition) the SSP1 has 
the lowest impact on warming and SSP5 the highest. Thus, we can see that the Scenario 
Matrix contains an implicit trade-off between meeting the Paris climate targets and a 
reduction in primary energy demand and a slowdown in population and economic growth. 
See Appendix C for more information on these scenarios and the IPCC Scenario Matrix. 

This approach contrasts with the IEA and PTEC scenarios presented in this report, which 
hold these macroeconomic outcomes constant across each of their scenarios (the former 
explicitly and the latter implicitly via a fixed 2% p.a. growth in useful energy). However, 
this provides one of the more notable results from comparing the PTEC scenario with the 
IPCC scenarios. 



72

Comparing the PTEC and IPCC emissions scenarios

We began this chapter with Figure 9 which presented the estimated warming 
(temperature anomaly) calculated for the PTEC scenarios alongside the least (SSP5-
RCP8.5) and most ambitious scenarios from the IPCC SR1.5 Special Report (SSP1-
RCP2.6 and RCP1.9). Starting with the most pessimistic scenarios, we see that the Stalled 
Transition scenario matches the SSP5 Baseline scenario quite well. This socio-economic 
scenario involves the global economy growing five-fold to 2100, and places no limit on 
emissions (Riahi et al., 2017). Thus, they fail to meet the Paris goals and send the world 
into a very non-optimal 4 degrees of warming. This result tells us two things that would 
be relevant for policymakers. Firstly, the 2% p.a. increase in useful energy required for 
both PTEC scenarios enables an enormous amount of economic growth – equivalent 
to the IPCC socio-economic pathway with the highest economic growth. Secondly, 
what is generally regarded as the “worst-case” scenario for decision-makers, RCP8.5, 
requires global technological progress in clean energy to essentially be stalled. Which 
means all the promising technologies currently in research and development, such as 
perovskites and printable organic solar cells (Hörantner et al., 2017; Xie et al., 2020), that 
have the potential to increase the efficiency of renewables further and lower costs, are 
all essentially mothballed. It is difficult to believe that even the fossil fuel industry, with 
all its wealth and influence, could achieve this. The use of RCP8.5 as a “business-as-
usual” scenario has already been criticised (Pielke & Ritchie, 2020). Given the IEA and 
others, have recently declared solar PV electricity to be the cheapest form of energy in 
history (IEA, 2020c) – and very likely to get even cheaper in the future, our analysis would 
agree with this criticism given that RCP8.5 matches so closely to our Stalled Transition 
Scenario. 

In contrast, the Decisive Transition appears to get close to achieving a temperature of 
around 2 degrees by 2100. Whilst not as low as SSP1-RCP2.6, this is quite a remarkable 
result given that the Decisive Transition scenario maintains the same 2% p.a. increase 
in useful energy demand through to 2100 as the Stalled Transition and SSP5-RCP8.5 
scenarios. This is possibly the most evident contrast between the Decisive Transition 
scenario, and the SSP1-RCP2.6 which we estimate has an annual useful energy growth 
of only about 1.2% p.a. (see Appendix C). The Decisive Transition scenario also contrasts 
with SSP1-RCP2.6 and SSP1-RCP1.9, in that it does not include any carbon capture 
and storage or negative emissions technologies or other unproven technologies. Nor 
does it rely on a significant increase in nuclear energy or high carbon prices (although 
it could be argued there is an implicit carbon price associated with the continued near 
term growth in renewables deployment). The results presented in Figure 9 suggest that 
continued technological progress in clean energy technologies, driven by continued high 
deployment growth rates, can profoundly impact emissions and dramatically reduce 
warming by 2100. This, we believe, has not been shown in any IPCC model outputs to 
date.
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Section 5: The barriers to a 
decisive transition and the 
opportunities presented by  
this research

 ● Introduction 

Based on the results presented in the previous section we have evidence to suggest that 
technological progress in clean energy might get us to a Paris-compliant world much 
more easily than is being suggested by the models of the IEA and IPCC. In this section 
we explore some of the potential barriers to the realisation of the Decisive Transition 
scenario, and counter with some opportunities for optimism. 

 ● Barriers to a decisive transition 

Mainstream climate mitigation models 

The mainstream climate mitigation models, such as the energy systems models (ESMs) 
used for the IEA World Economic Outlook, and those embedded within the integrated 
assessment models (IAMs) featured heavily in the IPCC outputs, are the dominant source 
of information provided to decision makers around the world on the speed, costs, and 
other requirements of climate mitigation efforts (Gambhir, 2019). We have already shown 
how such models can contain quite unrealistic assumptions around certain clean energy 
technologies, and the results of such models have been shown to be quite sensitive to 
such specification of clean technology costs (Barron & McJeon, 2015). Hence, adopting 
advice based on the results of such models must be done with caution. By setting 
expectations that climate mitigation will have a considerable cost, action on mitigation 
may be delayed (Aghion, Hepburn, Teytelboym, & Zenghelis, 2019). Early and decisive 
action has been identified by many studies as key to reducing the cost of climate change 
(Bosetti, Carraro, and Tavoni 2009; Jakob et al. 2012; Preston and Jones 2006; Rogelj 
et al. 2018; Warren et al. 2013). We therefore face the dilemma that if action is delayed 
because of expectations that climate mitigation will be too expensive – then this will be 
a self-realising prophesy, even if such expectations are based on a false premise. The 
major mitigation models might themselves be a fundamental barrier to decisive action on 
climate change and minimising the costs of mitigation.
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The development of these mitigation models involves the analysis of hundreds of 
technologies that can interact with one another. Because experience curves of such 
technologies can be non-linear, it becomes impossible to apply standard optimisation 
methods to such an ensemble of technologies. Consequently, as discussed in Section 
2, while such models are constantly being updated with new cost estimates, they 
appear reluctant to base such costs on historic trends. They either bring in exogenous 
deterministic forecasts for costs or employ devise rules that actively stifle the 
continuation of historic trends in key clean energy technologies, such as renewables. In 
either case, technological progress is not captured internally by the model. In addition, 
traditional models rarely focus on technological growth rates, which results in low-cost 
scenarios being relatively unexplored. Such models are also difficult to fine-tune with 
current data due to their fine-grained consideration of technologies and geographies 
(Way et al., 2020). And to our knowledge, no published work has applied the empirically 
based probabilistic technological change approach embodied in PTEC to the problem 
of mitigating climate change. The ultimate irony of this situation is that it is the use 
of optimisation in such major mitigation models that makes incorporating non-linear 
technological change so difficult (Grubb et al., 2021), and a potential reason for why their 
models are not able to correctly determine the least cost solution.

Identifying such problems is made difficult by the complexity of these models and the 
lack of transparency around the assumptions embodied in the many thousands of lines of 
code. There is a general paucity of information available to understand what assumptions 
have been used in many of these models (Gambhir et al., 2019). By hiding such 
questionable assumptions from the peer-review process they make it difficult to challenge 
the conclusions. This is a trend we have consciously tried to avoid with the development 
of PTEC. Ironically, the transparency of the PTEC model makes it more open to scrutiny 
and criticism from the established modelling community. 

PTEC was deliberately developed in such a way as to simplify the energy system as 
much as possible to focus on the key process of endogenous technological change. 
It is therefore fundamentally different from most major mitigation models. Firstly, it is 
deployment-driven, meaning the deployment rates of various technologies drive the costs, 
and expected temperatures and emissions. Additionally, the problem of intermittency 
of power generation from variable renewables is solved by the simplifying assumption 
of combining variable renewables with sufficient storage technologies. The dynamics 
of competition, demand, consumer adoption, and the influence of supply and demand 
on price are all avoided by focussing the time series of historic costs for the various 
technologies. It could however be argued that the experience curves at the heart of PTEC 
themselves embody some of these dynamics in they are a reflection of such dynamics 
impacting on the rate of deployment and costs of these technologies.

Because PTEC is built differently it is not surprising that the results from PTEC provide 
considerable contrast to the incumbent models. Unlike other major mitigation models the 
PTEC model results suggest that compliance with the Paris agreement could be cheaper 
and easier than indicated by the many alternatives, and potentially cheaper than the 
current system. Furthermore, the Decisive Transition sees the energy system decarbonise 
rapidly while requiring no reduction in energy demand, no explicit carbon price, very little 
nuclear power, or little need for mostly unproven-at-scale technologies such as carbon 
capture and storage. 



75

However, it is going to be a herculean task to convince the modelling and policymaking 
community that our simple, transparent model is right and most of the major mitigation 
modelling community are wrong – time will tell – as the continuing decrease in renewable 
costs will fairly quickly make the results from the major mitigation models difficult to 
defend.

Navigating the socio-technical transition

Despite the inclusion of ever greater complexity most climate mitigation models focus on 
only a few of the many elements necessary for a transition towards low-carbon systems 
(Geels et al 2019). That is, they lack a careful enough representation of the complex web 
of technologies, infrastructures, organisations, markets, regulations, and user practices 
that deliver services to society (Geels et al 2019), all of which must be transformed 
for any meaningful reduction in global energy emissions. Such accusations might also 
be levelled at the PTEC scenarios presented in this report. We attempt to assess the 
implications of such potential criticisms here. 

From the socio-technical transitions (STT) “multi-layer perspective” (MLP), any major 
socio-technical transition will be the outcome of three mutually reinforcing processes 
“increasing momentum of niche innovations, weakening of existing systems; and 
strengthening exogenous pressures” (Geels et al., 2017), all of which must be navigated 
before a transition is complete – a process that has historically taken over a century 
for other major technologies e.g. from sail to steam shipping (Geels, 2002). The MLP 
approach provides a plausible narrative to the “random shocks” discussed in Section 
2 that experience curve researchers find in the data and can hinder or accelerate 
technological progress. According to the MLP viewpoint, accelerating technological 
progress requires not just greater investment in research and development, but also a 
way of managing the impacts of such “random shocks”. That is, accelerating a socio-
technical transition requires a great deal of political support, widespread market and 
social acceptance, and a weakening of the existing incumbent regime. 

We do not dispute the assertions of the STT community. Our scenarios are named 
the Stalled and Decisive Transitions as a recognition of the role the global community 
must play in ensuring the deployment of clean technologies necessary to drive the 
technologies down their experience curves. STT proponents have also acknowledged 
that electricity generation has to date experienced a particularly rapid transition to clean 
technologies (Geels et al., 2017). There are several reasons for this, including electricity 
supply transformation not requiring significant consumer involvement, unlike the food, 
buildings, and transport sectors. Also, as electricity is an undifferentiated product, 
consumers are likely to experience little impact from the switch in energy sources. Finally, 
it has been easier for policy makers to deal with this sector due to the relatively small 
number of utilities involved, in contrast to the millions of small farmers/owners/builders in 
the food, transport and building sectors (Geels et al., 2017). In fact, the analysis presented 
by Geels et al. (2017) suggests that for some early adopters like Germany and the UK the 
uptake of renewables into the electricity system is already past many of the impediments 
that might slow down the widespread adoption of these technologies and they are now 
in their final MLP phase, with wider adoption of these new technologies now requiring 
adjustments in the infrastructures, market structures, and views on what is normal. 
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Kramer & Haigh (2009) have argued that there are “societal laws” that necessarily slow 
exponential growth once an energy technology passes 1% of primary energy supply. 
However, very little historical data is presented in their paper, with no supporting analysis 
or validation. The main argument for why growth must slow is that only 2-4% of existing 
capital stock needs replacing each year, and “industry will only consider early retirement 
of the existing capital stock if the total cost of the new technology (capital and operating 
costs) falls below the operating cost of the old”. If we assume a lifetime of the current 
energy generation systems that ranges from 25 to 50 years, the usual replacement rate 
of such structures ranges from 2% to 4% per year. Coupled with the historical yearly 
energy demand growth rate of 2%, this means that renewables could grow to meet 
roughly 5% of the energy demand without needing to force the retirement of any existing 
assets. With such a growth rate, renewables would replace most of the current energy 
generation systems in 20 years, with a small share of it to be phased out in the decades 
to follow (Way et al., 2020). 

There can be little doubt however that the transition of the entire energy system away 
from fossil fuels is still likely to impose enormous challenges for society. For example, a 
rapid transition away from fossil fuels, as presented in the Decisive Transition would likely 
lead to a major devaluation of fossil fuel assets and subsequently a destabilisation of 
global financial markets. A recent study by Rempel and Gupta (2020) found that pension 
funds from OECD countries still have an aggregated 10.58% of their portfolios invested in 
the fossil fuel sector. The problem that such pension-fund managers, and other financial 
investors face is that a rapid, disorderly shift away from carbon-intensive assets might 
exacerbate transition risks through weakened earnings for carbon-intensive asset 
operators, which, given their central role in the economy are a source of systemic risk for 
the financial system. This major source of risk has already been identified as a concern 
by the Financial Stability Board (Carney, 2015; TCFD, 2017a). Providing investors with the 
information necessary to incorporate all such forms of climate risks in their investment 
decisions can lower the economic, social, and political costs of transforming the energy 
industry by reducing the likelihood of stranded assets (Ansar et al., 2013; Farmer et al., 
2019), as can increasing the credibility of climate targets and associated expectations 
(Aghion, Hepburn, Teytelboym, & Zenghelis, 2019).

Considerably more literature could be cited here expounding on the many social, 
institutional, and economic barriers to a decisive low-carbon transition. One particularly 
powerful counter to all such claims is that the modelling approach used in PTEC is 
actually closer in theory to the STT perspective than those used by the major mitigation 
models. The latter models tend to optimise on a single dimension, such as cost or 
social welfare, identifying optimal pathways, and include technologies that have yet to 
gain social acceptance or are not yet feasible at scale, such as bio-energy with carbon 
capture and storage (Geels et al., 2017). In contrast, PTEC relies on decade-long 
empirical deployment and cost trends for known technologies – trends that incorporate 
their transition through niche markets, user acceptance, incumbent resistance, political 
wins, and losses, and changes to infrastructure detailed by the STT approach. The very 
slope of the experience curve represents the aggregation of all such future barriers 
being overcome in different markets, regions, and political environments, at different 
rates and times across the globe. The experience curves employed in PTEC represent 
the complexity of the socio-technical transitions they undertake and hence provide a 
defensible probabilistic estimate of the rate of that progress. 
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Unlike other optimisation models, the global system represented in PTEC will not 
automatically switch to these new technologies as soon as clean dispatchable 
technologies become cheaper than their fossil fuel counterparts. In PTEC the rate of 
deployment sets the scenario, and hence PTEC does not require assumptions around 
floor costs. Once the new technologies begin to dominate the market their deployment 
rates slow down, along with their cost declines.

Even if experience curves correctly reflect future socio-technical transition trends there 
is still much to be gained from the STT perspective in advising future policies. As the 
existing socio-technical energy systems have co-evolved with markets, governments, 
and our daily lives, continuing the changes necessary to decarbonise will undoubtably 
challenge society. The STT perspective provide valuable insights necessary to identify 
those policies that can promote widespread public and political acceptance of the new 
technologies, including the collection of reliable and comprehensive data, community 
involvement in the innovation process, and engagement with relevant stakeholders to 
understand their needs (Sovacool & Griffiths, 2020) and research into: “(1) environmental 
performance, (2) financing and business models, (3) user behaviour, (4) natural resource 
use, (5) visions and narratives, (6) social justice concerns, (7) gender norms, and (8) urban 
resilience” for all technological solutions promoted by such policies (Sovacool et al., 
2018). 

The “just” transition, gender and inclusiveness, and energy insecurity

Once key concern for policymakers in promoting a rapid clean transition, such as 
presented in the Decisive Transition scenario, is their impact on global equality and 
sustainable development goals. Notwithstanding that the research in this report suggests 
a decisive transition will lead to lower electricity costs, and the fact that many climate 
mitigation policies also provide valuable co-benefits (A. Smith, 2013), the simple fact that 
our socio-economic system is a complex, dynamic system means that adverse side-
effects are inevitable. This includes the potential for some climate mitigation policies 
to create or compound inequalities. One clear weakness of using such a simple, high-
level model, such as PTEC, is that it does not provide the granularity to really assess 
the structural regional change and redistributive questions associated with the “just” 
transition. 

Probably the most obvious and difficult adverse impact to manage for policymakers will 
be the loss of jobs in the fossil fuel and related industries (Rosemberg, 2010). Although 
many of the jobs related to these industries are already likely to be adversely impacted by 
increased automation in the future (del Rio-Chanona et al., 2021; Frey & Osborne, 2017), 
this only adds to the complication as it is not merely the loss of fossil fuel occupations 
that might impact on workers but also the probability that automation or climate policies 
might also impact on those jobs to which they might have transitioned (del Rio-Chanona 
et al., 2021). Regardless of whether automation or the green transition is the cause, 
strong protests in several countries around the world speak to the potency of feeling that 
can be generated against measures to reduce fossil fuel use that are not seen as ‘just’. 
Prominent examples are the coal union protests in the UK in the 1980s and more recently 
the ’gilets jaunes’ protests in France in 2018. 
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To counter such deleterious impacts some countries have offered large pay-outs, 
investments and retraining, such as Canada, Spain and Germany (Piggot et al., 2019), 
while others, like Poland simply refuse to commit to ending coal mining, and actively veto 
policies to increase climate ambitions (Jankowska, 2016). 

There is therefore likely to be resistance, and an added social and financial costs, to 
any decisive transition that may not be captured in the cost focused PTEC model, and 
that should be carefully managed by policymakers. However, given that the current high 
growth in renewables has occurred while subsidies for fossil fuels are still around double 
what they are for renewables (IEA, 2019) it appears inevitable that policymakers will have 
to deal with such transition pains regardless. 

Climate change is itself a potential cause of gross inequalities with the most vulnerable 
and least able to adapt more likely to be exposed to climate impacts. The developed 
countries could do much to redress the imbalance of past emissions being generated by 
their economic growth by providing foreign aid in green investments and by sharing new 
technologies. Such new technologies will also come with new material requirements and 
sources of waste that also tend to have a disproportionate negative impact on developing 
countries (Liu & Agusdinata, 2020; UNCTAD, 2020).

From a gender and inclusiveness perspective it is likely that the majority of workers 
impacted in the fossil fuel industry, particular mining, are male (Piggot et al., 2019) and 
mostly in developing countries, such as China and India. The transition to clean energy 
provides an opportunity to move towards greater gender balance, but the energy 
industry needs to prioritise such efforts now to avoid perpetuating existing gender 
inequalities (Pearl-Martinez & Stephens, 2016). For instance, women and migrants are 
over-represented in indirect, supportive roles, such as lower-paid service work and unpaid 
care work and as they are usually under-represented in the industry, they are less likely to 
be covered by any proposed worker compensation and re-training policies (Piggot et al., 
2019). 

Social equity concerns also go well beyond the implications for coal miners and include 
communities tied to coal-fired power stations and communities linked to oil extraction 
and refinement (Carley & Konisky, 2020). Policymakers must also be cognisant of the 
distributional impacts of various policy instruments used to promote new technologies 
(Peñasco et al., 2021), and the need for coordinated programmes to target the many 
causes of energy insecurity (Carley & Konisky, 2020). Much depends on contextual 
factors but through the application of good policy design, including multi-stakeholder 
engagement, adaptive policy strategies, and careful monitoring, many of the most 
deleterious impacts can be mitigated or prevented (Markkanen & Anger-Kraavi, 2019). 

Transition risks and stranded assets

The PTEC model is by necessity an abstraction from reality and a much more simplified 
model than those it is being compared to in this report. It therefore only provides a highly 
aggregated estimate of the capital investment associated with the current and future 
global energy system. It is not a capacity expansion model and does not directly track the 
cost of assets that may be stranded by an ambitious climate mitigation strategy. 
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The extensive analysis of existing global assets by Tong et al (2019), suggests that the 
potential cost of stranded assets of a transition pathway that has a 50 per cent chance of 
limiting warming to 1.5 degrees (580 Gt CO2) could be between $5 to 17 trillion. The high 
side of this estimate results from stranding those assets with the highest asset value per 
committed emissions, which is primarily in transport. 

The Decisive Transition scenario has electric vehicles becoming cost competitive with 
internal combustion engines (ICE) in a decade, which maps well to analyses by other 
organisations (CCC, 2019; Hagman et al., 2016), suggesting that some stranding or early 
retirement of transport assets is possible. Given the growing numbers of municipalities 
requiring zero carbon transport in the coming decades, the end of the ICE-age might 
come sooner than later (IEA & IRENA, 2017) suggesting a significant transition risk for the 
transport sector.

Despite this risk, it should be made clear to decision-makers that stranded assets 
are only a one-off cost to the system. Once replaced by clean technologies, possibly 
when the combined capital and operating costs of the new technologies fall below the 
operating cost of the old, there are no further transition costs. In contrast, the physical 
costs associated with increased extreme weather, wildfires, floods, droughts, and 
hurricanes resulting from a slow transition are likely to be orders of magnitude higher, and 
will be continual, long term, and potentially permanent (Cohen et al., 2020). To put the 
estimated transition costs in perspective we produced a conservative estimate for climate 
damages from each of the PTEC scenarios using the FUND-Hector model (Appendix D), 
with the Stalled Transition estimated to cause at least USD$330 trillion more in climate 
damages that the decisive transition from 2020 to 2100 – an order of magnitude greater 
than any estimates of transition risk. 

Regional differences in the costs of technologies 

The probabilistic estimates of the cost of technologies included in PTEC are based on 
their deployment rate and their historical record. We use global averages in PTEC from 
the most reliable sources available. It might nevertheless be argued that such averages 
do not adequately reflect the costs experienced in all countries on earth. The most recent 
solar PV installation costs for India and China are some of the lowest per kW costs in 
history (IRENA, 2019), with low margins, low labour installation costs and access to 
low interest finance. They appear in the lowest 5% extremes of the LCOE probabilistic 
forecasts generated by PTEC for 2020. On the other hand, solar PV installation costs in 
Russia and Japan are almost three times those seen in India (IRENA, 2019). In these latter 
countries new solar deployment will be slow without significant policy support. All such 
regional differences are incorporated in the data used to generate the global average 
cost estimates used in PTEC, but global averages can hide the range of costs that might 
be experienced in different countries. 



80

The regional differences in the costs of deploying renewable energy technologies is 
generally dominated by local conditions, solar irradiance20 and wind resources, and local 
operating costs – particularly interest rates, as capital costs far outweigh operating costs 
for most renewables (Ondraczek et al., 2015), and labour costs (Lang, 2018). It would be 
reasonable to assume that most of the global deployment to date would have occurred 
in locations with the most favourable conditions (low interest rates, high winds and 
irradiance, low labour costs), thereby skewing our empirical record. 

For instance, Yuan et al. (Yuan et al., 2014) assessed the LCOE of distributed solar PV 
in China and found that solar PV only broke even with fossil fuel electricity generation in 
those regions with the best solar resource or high commercial/ industrial retail electricity 
prices even with subsidies.21 However, the current deployment of renewables by country 
does not match well with renewable potential, suggesting political will is also a stronger 
determinant of where renewables are currently being deployed. 

What is most relevant is that our experience curves reflect these very regional 
differences, not just in the location of the global average but in the slope of the 
experience curve. If regional differences did not exist, then the moment renewables 
plus storage became cheaper than the fossil fuel alternatives the global energy system 
would almost immediately deploy only such cheaper alternatives. This is a key problem 
with entering continually declining cost curves into the cost optimising major mitigation 
models. However, as discussed above regarding socio-technical transitions, any 
technology will initially grow through a series of niche markets where the new technology 
has an advantage, even at a higher price. Some of these niche markets will be regional. 
For solar PV that market was originally in space and other remote locations such as 
offshore oil rigs and remote communities (Perlin, 1999). It was in part due to favourable 
interest rates that Germany was able to invest heavily in capital intensive solar PV during 
the Energiewende of the early 2000s. However, as the price declined, and different actors 
in different regions learned how to finance, deploy, and integrate solar PV, the deployment 
has increased, and with the experience this brings, the costs have decreased. 

The story of regional differences is therefore represented in the very slope of the 
experience curve as the new technology wins out in various regional markets, either 
through cost, or decreased air pollution, or political objectives such as decarbonisation 
targets. The slope of the experience curve therefore represents the aggregation of the 
technology becoming favoured at different rates in the different niche markets, regions, 
and political environments, across the globe.

20 A recent evaluation of regional LCOE difference with the key technology PV solar suggests the 
economic potential varies between $0.06/kWh and $0.14/kWh in most countries of the world with 
over 75% of the evaluated global area below $0.12/kWh (World Bank 2020).

21 It is possible the picture has changed for China since 2014, given the rate of decline in renewable 
costs, but such studies demonstrate that regional conditions within and between countries will dictate 
the pace of global renewable deployment.
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Energy security and the intermittency problem 

The intermittency of most renewable generation options will result in additional costs 
to the grid once renewables go beyond 40% of grid capacity (Franco & Salza, 2011). As 
discussed in Section 4, the PTEC model deals with this problem directly by costing the 
addition of sufficient storage investment necessary to match variable renewable energy 
(VRE). However, unlike other studies that have applied this methodology (Barron & 
McJeon, 2015), we also allow costs in storage to decline probabilistically in-line with their 
historical trends. 

In the last 23 years, the production of lithium-ion batteries has grown at a rate 30% per 
year, while costs have dropped 12% annually. Such trends bode well for the future of 
storage, but there will be a need for long-term storage once VRE penetration reaches 
around 80%. Energy dense fuels, such as electrolytic hydrogen may be part of this 
solution, and as around 85% of its costs is electricity the reduction in costs of solar PV 
and wind power will reduce the cost of electrolytic hydrogen. 

This in turn can further promote other P2X fuels such as ammonia or methane which 
are more easily stored and transported, and already widely used (Cesaro et al., 2021). 
Suggesting there exists a viable path for dealing with intermittency while moving towards 
deep decarbonisation. This is however the most speculative part of the analysis on which 
this report is grounded, as there exists only limited time series of data for the mass 
production of clean fuels.

The problem of incorporating a greater share of VRE into regional electricity networks 
is also obviously more complex than our representation. Most distribution grids have 
been built for energy to be sent in a single direction from a small number of large energy 
providers. There will therefore be additional costs to upgrading distribution networks 
not suited for more distributed energy generation resources that are not included in this 
assessment. This will be less of a problem for countries where a large portion of the 
renewable energy is being generated at large renewable installations, such as offshore 
wind in the UK, and hydroelectric power in Brazil. 

Is an interim solution required? 

There appears to be a vocal push, primarily from the fossil fuel industry, for an “interim 
solution” to any clean energy transition given the still low levels of deployed renewable 
energy (Gürsan & de Gooyert, 2021; Stephenson et al., 2012). With electricity generated 
using efficient natural gas turbines producing roughly half the emissions of dated coal-
fired power stations, some early gains could be made from such an interim solution. 
This was in fact how the UK made early ground in meeting its climate mitigation 
targets. However, given the current low prices of renewables this is likely to be a risky 
solution for most countries going forward., particularly if the rest of the world focuses 
on deploying renewables with their better experience curves. Adding “bulky” long-lived 
energy infrastructure increases switching costs and slows down change (Wilson et al., 
2020). Hence, any proposed interim solutions should first be assessed for their potential 
to create carbon lock-in and exacerbate transition risk (Aghion, Hepburn, Teytelboym, 
Zenghelis, et al., 2019; Gürsan & de Gooyert, 2021; Pfeiffer et al., 2018).
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Competition from fossil fuels

One potentially limiting assumption that the PTEC scenarios in this report make, is that 
fossil fuel prices do not respond to the competitive pressures of renewables beyond their 
behaviour over the past 50 years. That is, we assume the price of fossil fuels will remain 
within the bands of historical trends and the uncertainty created by random shocks. For 
example, under a scenario where solar energy becomes widely deployed and significantly 
cheaper, we may reasonably expect that fossil fuels will be forced to innovate to remain 
relevant. However, Way et al. (2020) compares the Decisive Transition (fast transition) 
scenario with one in which fossil fuels are only supplied from regions with the least costs 
and still finds the Decisive Transition more cost effective over a range of discount rates.

It is therefore entirely possible that renewables are competitive even in regions with very 
cheap fossil fuels. Aghahosseini et al. (2020) undertook a highly detailed analysis of 
transforming the energy system in the Middle East and North Africa (MENA) region and 
found a system based on wind and solar PV, similar to our Decisive Transition scenario, to 
be their least cost solution.

Similarly, using natural gas instead of P2X fuels might result in cheaper scenarios, but 
this would not lead to carbon neutrality. Therefore, even acknowledging that Decisive 
Transition is cheaper than a Stalled Transition, as well as a scenario in which the fossil 
fuel companies produce only at their lowest costs, the decarbonisation of the energy 
system will still likely require policies tailored to curb the use of fossil fuels. 

 ● The opportunities presented by the Decisive Transition

The justification for the application of technological trends in PTEC has already been 
given a great deal of attention in this report, with more available in Way et al. (2020). 
However, given the above counterarguments for why a decisive transition might not 
manifest we feel it is important to provide some counter arguments, and to stress the 
opportunities that the PTEC approach to projecting technological progress into the future 
offers decision makers.

PTEC’s conservative assumptions about costs and tech growth

It is important that readers are aware of the number of ways in which the PTEC results 
were made conservative in terms of the low cost of renewables. We only made use 
of those technologies that had well documented cost time series, and hence new 
technologies in development that show great promise but do not offer the same historic 
record were not considered, irrespective of their being well regarded by experts. We 
assume renewable energy capacity grows over the next decade at rates that are lower 
than their consistent historic record. The growth of PV output between 1998 and 2018 
was at an exponential yearly average of 44%, while for wind power it averaged 23% per 
annum. For the Decisive Transition PTEC conservatively adopts 32% per year for PV, and 
20% for wind power. 
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The PTEC scenarios allows a 2% annual increase in useful energy demand, a level of 
growth only matched by the most aggressive shared socio-economic pathway – SSP5 
“Take the Highway”. In contrast, the SSP1 “Taking the Green Road” scenario against 
which the Decisive Transition was compared to assumes only about a 1.2% annual 
increase in useful energy. Finally, although the model lacks precision in specifying the 
exact operational details of the entire electricity system it more than compensates for this 
by an oversupply of storage technologies able to meet all electricity and energy demands 
and assumes the use of storage even though in many cases demand management or 
expanding the grid would be a cheaper alternative. 

The empirical evidence

If we just look at the empirical evidence, the cost of oil, coal, and nuclear energy has 
remained within one order of magnitude or has actually increased (in the case of nuclear), 
over the last 50 years. In stark contrast, the costs of some renewable technologies have 
dropped 3 orders of magnitude over that same 50 years. Just as the constant year-on-
year declines in computing costs have taken most people, including those in the industry, 
by surprise, the same can be said of these new energy technologies. 

Solar PV was a very niche technology 20 years ago, mostly used in remote locations 
or on small, low power devises like calculators and watches (Perlin, 1999). It is not 
surprising that most people have a bias against the idea that such a niche and seemingly 
simple technology could grow to become the dominant form of electricity generation 
on the planet. However, if we take a probabilistic approach the cost declines in solar 
were predictable, and was predicted ten years ago by a co-author of the PTEC model 
(Ferguson et al., 2010). In fact, based on those same technological trends, the future 
dominance of solar is quite likely. 

There exists therefore sufficient compelling evidence that these long-term energy 
technology cost trends appear to be consistent and predictable (Farmer & Lafond, 2016; 
McNerney et al., 2011). Alongside advances in the technologies themselves, we have seen 
advances in our understanding of how technological change unfolds in the economy more 
broadly and of the characteristics that fast-progressing technologies have in common 
with each other (Wilson et al., 2020). As discussed in Section 2, several new methods that 
are statistically validated and firmly grounded in data have been developed for forecasting 
technological progress (Nagy et al., 2013; Way et al., 2019). The empirical evidence clearly 
supports the trends used to develop the scenarios presented here. 

There exists social, material, and production barriers on the horizon for all the 
current versions of these technologies, but there are also potential solutions and new 
fundamentally different versions of these technologies that will allow their growth to 
continue. As discussed already in this section, the experience curves used to predict the 
future costs of these technologies embody many of these past obstacles and solutions. 
They are thus still the best predictors available for future trends. Finally, we can be 
confident that societies currently experiencing high levels of pollutions will not find clean 
energy sources too difficult to accept.



84

As discussed in the previous sections, the results presented here are based on 
predictions of future costs. This approach sets these PTEC scenarios apart from the 
other major scenarios examined in this report as the other major mitigation scenarios 
make no such claims (in fact, they state quite the opposite), and yet their conclusions 
depend almost entirely on the costs used by the model (Creutzig et al., 2017). What this 
makes abundantly clear is that there exists an opportunity here for an improvement in the 
range of solutions that are currently being provided to decision makers. At the very least 
the major mitigation models should be required to present the cost assumptions explicitly 
and transparently for all their energy technologies, including renewables, along with the 
empirical evidence on which such assumptions are based. 

A methodology for incorporating probabilistic technological change

As with any model, PTEC has its limitations (which we discuss later in the report). 
However, these limitations do not undermine the model’s ability to offer a glimpse 
of a broader range of possible energy futures and climate mitigation solutions than 
those captured in the current energy and climate mitigation models used to inform 
policymaking. At the very least the probabilistic technological change forecast (PTEC) 
model provides a defensible methodology by which empirical-based non-linear trends 
in technologies can be incorporated into climate mitigation models and given an 
accommodating framework, into decision making processes (Sharpe et al., 2020). 

The PTEC model is simple and would need enhancement to provide sufficient information 
to match the outputs of the major mitigation models. We have done our best here to add 
components of the energy and total economic system on to the PTEC results to enable a 
defensible contrast. However, such additions are set to the specific scenarios used in this 
report and they are post-processed, so do not include dynamics between the modelled 
components and those not modelled. We have therefore had to by necessity incorporate 
a large range of uncertainty around these components in our presentation of the resultant 
emissions scenarios. 

Despite the need for further work, we hope that through this exercise we have 
demonstrated the value of incorporating more realistic representations of technological 
change into climate mitigation models. As discussed in Section 2 there is a vast and 
exciting area of the solution space that is not being explored by the major mitigation 
models which may not require decision makers to choose between climate mitigation and 
economic growth, between future and current generations. With the right technology we 
can potentially have our cake and eat it too. 
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Section 6: Conclusions

 ● The implications of this work

The choices we make in energy investment in the next decade will define the world we will 
live in for many decades to come. Making the right energy investment choices constitutes 
a sensitive intervention point that can tip the system towards a cleaner, smarter, and 
cheaper world (Farmer et al., 2019). A little can go a long way, but why wait? In fact, 
waiting might well just be a waste of money (Way et al., 2020). 

As discussed in Section 5, the modelling results presented in this report are sufficiently 
robust to prompt a re-evaluation of current assumptions around the expected cost and 
speed of transition; the current quantification of each country’s NDCs; expectations 
around mid and long-term energy generation mix; and the potential transition risk of 
current technological trends. We provide here a brief commentary on how we understand 
these implications and wrap up with some concluding remarks.

Expectations around the overall cost of transition to a Paris 
Compliant Scenario

The current thinking about renewable energy makes significant assumptions about the 
cost of future energy which influences the speed at which the transition happens.

There also appears to be a general belief that renewables are too expensive; or are 
unlikely to continue to drop in price for much longer; or due to intermittency, have an 
absolute limit to the fraction of our energy needs they can meet; or provide no solution for 
difficult to abate energy and non-energy emissions. 

An alternative, perhaps overly simple, but nonetheless meaningful narrative, is that 
renewables plus storage can provide dispatchable, baseload energy; that renewables plus 
hydrogen (e.g., green ammonia) can provide clean fuels; and that an energy system made 
up of renewables plus storage plus hydrogen can replace our entire fossil fuels dominated 
energy system. What is more, if renewable energy gets cheap enough, as cheap as their 
experience curves suggest they will, then such a clean energy system could actually 
be less expensive than the current system (Way et al., 2020), without the pollution and 
associated morbidity and mortality (Vohra et al., 2021), and without the current increasing 
rate in global warming and associated climate risks which are orders of magnitude 
greater than any estimates of transition risk (Appendix D) (Cohen et al., 2020).

These are two very different narratives, and the evidence from empirical-based 
technological trends favour the latter. 
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Expectations around the speed of transition

Similarly, this research offers the opportunity to revisit thinking around the most financially 
effective speed to transition to a Paris compliant scenario. 

We have found no evidence that shows renewables will not continue their current 
decreasing cost trends, despite this being assumed in most, if not all, of the major climate 
mitigation models. If they continue to fall, then electric vehicles would most certainly 
be cheaper than internal combustion vehicles in less than a decade (Sharpe & Lenton, 
2021). Which will in turn likely drive electricity costs down even further. There is a positive 
feedback dynamic here and it is arguably already underway (Farmer et al., 2019), whereby 
renewables get cheaper, and electricity gets cheaper, and electric transport gets cheaper. 
This increases demand for electricity, and the deployment of more renewables. Making 
renewables cheaper...and the feedback repeats. 

Such a technology trend-based energy transition will not get us all the way to our Paris 
Targets. There are still non-energy sectors and rogue emissions that will have to be 
dealt with. But with cheap electricity even the task of pulling carbon dioxide out of the 
atmosphere will be considerably cheaper. 

Access to low-cost energy drove the industrial revolution and brought more prosperity 
to more people than the world has ever seen before. Energy is set to get even cheaper, 
which sounds like a good start for enabling prosperity for even more people around the 
world. 

Nationally Determined Contributions (NDCs)

At a national level, the research may act as a catalyst for governments to reassess their 
NDCs at COP26. This is especially true for nations which expect a large growth in energy 
demand and, therefore, are already considering new investment in energy infrastructure. 
A better understanding among national policymakers of the cost reductions which have 
already happened in renewables, and how a Paris-style collaboration to be ambitious 
on action – through investment in renewables and storage in national targets – might 
benefit all concerned. To understand whether such a collaborative strategy is risky for 
individual countries might require more regional granularity than the model presented 
here – national policymakers will possibly want to see regional differences in the cost of 
renewables reflected in the analysis. We intend to tackle this question in a national model 
for China in 2021.

Expectations around the make-up of energy technologies in  
the future

It is generally agreed that electrification of energy is one of the three pillars of deep 
decarbonisation strategies, along with fuel switching and efficiency measures (Sachs, 
2015), and that even without the imperative to decarbonise, electricity is likely to become 
our primary source of energy in the future (Jones et al., 2018). A key reason why the 
Decisive Transition scenario is so successful is simply a product of the efficiency gains 
from electrification. Once electricity is generated by the renewable source it only suffers 
moderate losses when converting that electricity to useful energy; by contrast, at least 
half of the primary energy is lost in converting fossil fuels to electricity, or torque in an 
engine, or to heat. 
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In the short- and medium-term, situations may arise where energy demands cannot be 
met by renewables. In these situations, there might be an argument for investment in 
interim fossil-fuel based solutions, such as natural gas. However, it should be kept in 
mind that such investments would not contribute to the overall transition, can lead to 
carbon lock-in, and generate further transition risk. Not only will choosing renewables 
where possible likely lead to lower cost energy but also fewer assets that will have to be 
discarded before the end of their engineered lifetime. It is very likely that any fossil fuel 
assets built in the future will be replaced even before their even shorter financial lifetime, 
as it is possible their operating costs alone could be above the cost of building new 
renewable generation, even without a price on carbon. 

This model also calls into question the continued investment in nuclear. As the results set 
out in previous chapters show, it may be possible to get close to Paris compliance without 
continued investment in nuclear power generation. Nuclear energy can itself create a 
greater energy security risk due to the high generation losses when individual sites go 
down (Schneider et al., 2019) and it does not mix particularly well with renewables at low 
usage rates (Cesaro et al., 2021). Also, to restate the major premise of this report, the 
more we invest in renewables, the faster they ride down their experience curves. The 
UK’s investment in Hinkley Point C nuclear reactor is already looking like a very expensive 
legacy given how cheap and reliable offshore wind has become. 

Finally, current thinking around the future mix of technologies, expressed in the major 
mitigation models, is that a Paris compliant pathway must rely heavily on underdeveloped 
technologies such as carbon capture and storage (CCS) and Bioenergy with CCS 
(BECCS). The transition scenarios in this research decarbonises the energy system 
without relying on these technologies. 

Expectations around the transition risk

There is still a lot of work to be done to understand and limit the risks associated with 
the transition of the global energy system. As discussed in Section 5 we need to ensure 
institutional and social barriers are countered; financial stability is maintained; and 
concerns around job losses in the fossil fuel industries are addressed. The IEA has itself 
shown that renewables have the potential to provide far more jobs than other energy 
related investments (IEA, 2020b), but these jobs may not be created in the areas where 
coal mines are being closed and so industrial strategies will need to be developed to 
counter such transition risks (Mealy & Teytelboym, 2020). 

Transition risks are real and are likely given how rapidly technological trends are moving, 
but it must be remembered that stranded assets are a one-off cost. If we don’t put an end 
to climate change, the more frequent and damaging extreme hurricanes, floods, droughts, 
and wildfires will potentially cause orders of magnitude more costs that will be constant, 
long-term, and potentially permanent.
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 ● Concluding remarks

Current energy transition models are important, but there is space 
for a wider view

As set out in Section 1 of this report, existing climate mitigation models have offered 
decision-makers with useful insights into the complexity of the transition process 
for decades. However, this complexity frequently requires compromises in model 
construction that can narrow the possible range of outcomes produced. As the results 
from the PTEC scenarios presented in this report, such compromises can occlude a 
wider view of alternative futures that might deliver a decisive decarbonisation of the 
energy system with greater financial efficacy. However, if such alternative views are not 
given a seat at the table, the current modelling results restrict the solutions policymakers 
are offered, ultimately slowing down the transition and society’s ability to mitigate climate 
change. 

New collaborative thinking is needed around delivering a decisive 
transition 

This report has set out key assumptions in energy transition policy that bear re-examining. 
What is needed next is another Paris-style global collaboration, but this time not just on 
ambition, but on action – and specifically on investment in clean energy technologies 
with good reliable experience curves. COP26 in November 2021 offers a ripe opportunity 
for a Glasgow Accord on action. Renewables are clear “runners” in the technology race 
and those that bet on it early will very likely capture more of the prosperity this green 
industrial revolution has to offer (Farmer et al., 2019). 

Much work to be done, but the future looks much better

There will inevitably be pains to such a major global transition. But the good news is that 
with renewables we can have our cake and eat it too. It is possible to have economic 
growth while achieving emissions reductions. There need not be a trade-off, and after the 
Covid-19 pandemic we cannot afford business-as-usual, it is too risky and too expensive. 
The major mitigation models informing decision makers are not exploring all options and 
might very well be missing the best. When coupled with storage, expanded transmission 
networks, and smart grids, renewable energy provides a solution to the energy trilemma 
that the fossil fuel system might never be capable of solving – an energy system that is 
affordable, secure, and sustainable. 
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Appendix A: Climate mitigation 
models and authorities 

 ● Climate impact, mitigation, and adaptation models

We provide here a brief overview of each of the various models that are used by the 
climate modelling community to provide information to decision-makers relevant to action 
on climate change. Note that the categorisations of models we present here are not 
mutually exclusive and there are many examples of crossovers (Dickinson, 2007). 

Earth Systems Models (ESMs) (sometimes broadly known as ‘climate models’) are 
complex tools used to explore future physical and biogeochemical responses to changing 
atmospheric composition and radiative forcing. ESMs can be General Circulation 
Models (GCMs) or Atmosphere–Ocean General Circulation Models (AOGCMs, the 
key components of GCMs), which both use three dimensional grids over the globe 
to represent physical processes in the atmosphere, ocean, cryosphere and land 
surface (IPCC data, n.d.). Lower resolution ESMs, known as Earth Systems Models of 
Intermediate Complexity (EMICs), and even simpler reduced-form ‘emulators’ of full 
climate models such as FAiR and MAGICC, can also be used, especially to investigate 
longer timescales and improve model-run speed.22 ESMs simulate the response of the 
climate system to increasing GHG concentrations to produce consistent depictions of 
climate change needed for impact analysis. ESMs are the basis for the construction 
and interpretation of emissions scenarios that provide modelled trajectories of global 
anthropogenic emissions, and conceivable consistent patterns in the physical climate. 
These physical climate scenarios are essential to inform the metrics for targets, which 
might include temperature (e.g., the Paris Agreement), emissions budgets of future GHG 
emissions (e.g., the UK’s Climate Change Act 2008), stabilisation levels of atmospheric 
GHG concentrations and anthropogenic radiative forcing of the climate system (e.g., the 
RCPs see below). 

Energy Systems models are used for synthesis, and simulation of aspects of the global 
energy system. Since energy is at the core of emissions productions, energy system 
models are often (in simplified form) both a component of emissions modelling, and 
central to mitigation and adaptation scenarios used to analyse response strategies (Hall & 
Buckley, 2016). 

22 For example, the emulator MAGICC calculates the annual mean global surface air temperature and 
global mean sea level implications of emissions scenarios, and is linked to SCENGEN, a database 
containing a large number of GCM experiments. This allows for greater exploration of both climate 
change scenarios and the uncertainties associated model parameter settings, including carbon cycle 
feedbacks is possible (Palmer et al., 2018).
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They can include models for forecasting, energy planning, energy supply & demand 
simulation, as well as analysing the behaviour of energy equipment or behaviour of entire 
systems, power flows, and energy system optimisation (Kondili, 2010). Some examples 
include MARKAL (Fishbone & Abilock, 1981), MESSAGE (Schrattenholzer, 1981), and 
POLES (Keramidas et al., 2017). Energy System Models are crucial to formulating 
legislation on energy supply (e.g. the promotion of renewables) and/or energy demand 
(e.g. industrial or residential energy efficiency), which are addressed by around 60% of 
climate laws (S. M. Eskander et al., 2020). 

Land Use Models are used to model other emission-related systems, such as land use 
and ocean productivity and biodiversity. Such systems are usually pooled together in 
IAMs under what are known as Agriculture, Forestry and Other Land Uses (AFOLU). 
Each of these have their own equivalent modelling efforts. The purpose of such land-
use models is to downscale the aggregated land-use projections of IAMs to obtain a 
spatial land-use distribution, which could subsequently be used by Earth system models 
for global environmental assessments of ecosystem services, food security, and climate 
policies.

Integrated Assessment Models (IAMs) are an attempt to bring together the processes 
of the aforementioned earth system models, energy system models, global economic 
models, and in some cases other land use and biodiversity models. There is an enormous 
range in the level of detail, complexity and interconnections considered in IAMs, ranging 
from a collection of a small number of equations (cf. Nordhaus 2014) to the syntheses of 
thousands of equations from physics, chemistry, biology and economics (cf. Reilly et al. 
2012). The ‘simple’ IAMs, such as DICE, POST and FUND aim to identify ‘optimal’ climate 
policies by calculating the costs and benefits of proposals (Weyant, 2017), such as 
estimating values for the social cost of carbon (SCC), and generally optimise for a global 
social welfare function. 

The more ‘complex’ or ‘process driven’ Integrated Assessment Models (IAMs) couple 
the sub-models described above together in a complex model-of-models that each 
run against a consistent set of initial variables and exogenous drivers. Much of this 
work of creating and running IAMs is performed at leading scientific institutes around 
the world. The more ‘complex’ IAMs seek to simulate the costs of mitigation through a 
detailed projections of the economic costs of mitigation efforts at regional and sectoral 
levels, based on a framework of linked “modules” representing each of the sectors of 
the economy, energy systems, agriculture and the climate, each of which can interact 
(CarbonBrief, 2018). Examples of the more complex IAMs include AIM-CGE, GCAM, 
IMAGE, MESSAGE-GLOBUM, REMIND-MAgPIE and WITCH (all of which are used in 
the IPCC AR5). More recently, the process of model development has been integrated 
with the intended users, with calls for greater collaboration from climate scientists and 
economists with stakeholders in the development of scenarios (Hall & Buckley, 2016).

Despite the increasing complexity of these ‘complex’ IAMs, some difficult processes 
have typically been emitted. The feedback of economic damages and reduced economic 
growth from extreme weather events, such and flood losses, and any adaptation costs 
are not generally included in complex IAMs. This obviously makes using their results to 
estimate the costs of inaction misleading for policy-makers as the economy grows at the 
rate defined by the scenarios, regardless of the impacts of climate change (CarbonBrief, 
2018). 
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Another, cause for concern is that complex IAMs struggle to incorporate non-linear 
system dynamics, such as endogenous technological change, and non-technical 
mitigation barriers and opportunities, such as changing consumer behaviour (CCC, 2019). 
Given the potential for such non-linear components of the socio-economic system to 
enable rapid decarbonisation (Farmer et al., 2019) such an omission could result in key 
areas of the solution space being underrepresented in their results. The non-linear growth 
in clean energy technologies is one such omission that we hope to address in part with 
this report.

More recently, there have been efforts to develop more consistent modelling frameworks 
for climate impacts, known as the coupled/integrated human-earth system (CHES/IHES) 
models, in which IAMs, ESMs and impacts, adaptation and vulnerability (IAV) models can 
be united (Monier et al., 2018). Such a coupling strategy could provide solutions to some 
of the criticisms aimed at IAMs to better synthesise impacts, adaptation and mitigation, 
but at the cost of ever greater complexity.

Regional and National-Scale Models are used for the development of national 
adaptation plans, and identification of short and long-term needs. They can involve 
the downscaling of global climate scenarios to produce regional models, e.g. through 
CORDEX (Ashfaq et al., 2020). Influential sector systems models, ESMs and IAMs can 
also be found on a national scale, which allows for a more tailored approach to impact, 
mitigation, and adaptation potential. The UK’s UKCP18 , Swiss CH2011 (2011), Dutch 
KNMI scenarios ( 2015), US National Climate Impact Assessment (Melillo et al., 2014), 
South African LTAS (Department of Environmental Affairs, 2013), and German Klimaatlas 
(DWD, n.d.) are among the hundreds of national projects that may be more accessible and 
responsive to the needs of local policy-makers and users (Grantham Research Institute 
on Climate Change and the Environment, 2019). Additionally, some models began as 
national but have been extended for wider use (Skelton et al., 2019), and, conversely, 
some global IAMs are well suited towards single-country analysis. (For example, AIM/
CGE, which is foundationally built as an economic model with a national economy and 
energy system, and trade relationships with the rest of the world at its core.) Even moving 
beyond the national scale there have been calls for greater granularity and more local-
based modelling. Since local evidence-driven policy actions can have wider international 
mitigation benefits (Estrada et al., 2017), robust local evidence is critical to inform local 
resilience and adaptation (Howarth et al., 2020). Nevertheless, given that the challenges 
and impacts of climate change will be global in character, there should be caution against 
regional-only optimisation which excludes impacts in other regions, and global models will 
continue to be most useful in answering a range of trade, innovation, and resource issues. 

 ● The key authorities that produce scenarios 

The key authorities of climate scenarios modelling are known for their thoroughness, 
expert authors, and alignment with international goals, such as the Paris Agreement and 
UN SDGs, despite differing in their methodologies and outputs. We provide here a brief 
overview of each and the work that they do in providing the world’s decision-makers with 
climate mitigation information.
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The IPCC

The most extensive, well-known and widely used body of projections and pathways are 
those of the IPCC, which has issued five comprehensive Assessment Reports (ARs) to 
date (in 1990, 1996, 2001, 2007, 2013). The IPCC has a wide audience but is intentional 
in informing policy makers and the media,23 with content made to be deliberately policy-
relevant, but not policy-prescriptive. The IPCC reports are widely trusted and demonstrate 
exceptional scientific credibility, due to their extensiveness and inclusive process.24 AR5 
and the 2018 Special Report for Global Warming of 1.5°C (IPCC SR1.5), in response to 
the new ambitions set by the Paris Accords, are used as a basis in much of the below 
described policy. 

The physical science of the IPCC AR5 report (WGI), relies heavily on the results of the 
CMIP5. The adaptation assessment (WGII) attempts to summarise climate risks in the form 
of expert judgement integrated with empirical evidence. The mitigation assessment (WGIII) 
builds on the use of the five SSPs, described above, employing six different complex IAMs 
to translate the socioeconomic conditions of the SSPs into estimates of future energy use 
characteristics and GHG emissions. To combine these with mitigation targets (defined 
by radiative forcing levels RCP2.6, RCP4.5, RCP6.0 and RCP8.5), additional modelling 
presents how different levels of climate mitigation and adaptation would fit into the future 
described by each SSP. The IPCC 2018 Special Report 1.5 takes the mitigation target of 
RCP1.9, corresponding to the Paris Agreement’s target of limiting warming to below 1.5°C.25 
Like the AR5, it also utilised both MIPs26 and the low-computational-cost emulators such 
as MAGICC,27 which allows for greater exploration of both climate change scenarios and 
the uncertainties associated model parameter settings, including carbon cycle feedbacks. 

In terms of (potentially controversial) outcomes, the SR1.5’s 78 emissions pathways 
and system transitions can either be a temperature stabilisation at or just below 1.5°C, 
or temporarily exceeding 1.5°C (“overshoot”) before returning below 1.5°C through the 
application of negative emissions technologies; while emissions reductions can be 
achieved with different portfolios of mitigation measures, balances between lowering 
energy and resource intensity, rate of decarbonisation and reliance on the removal of CO2 
(IPCC, 2018). 

23 Noting that “climate policy design is influenced by how individuals and organisations perceive risks 
and uncertainties and take them into account” the IPCC reports also have an SPM (summary for 
policymakers) to highlight the most critical developments and and ensures presentation of level of 
certainty in its pathways is well understood with classifications such as “high confidence”, “medium 
confidence” etc, such that it can also provide clear and consistent communication.

24 AR5 had experts from over 80 countries, 830 lead authors and review editors, 1000 contributors, and 
2,000 expert reviewers.

25 The report warns limiting the global average temperature to a maximum of 1.5°C “require[s] rapid and 
far-reaching transitions in energy, land, urban and infrastructure [systems] (including transport and 
buildings), and industrial systems.”

26 For example, HAPPI-MIP was used for SR1.5.

27 The ‘Model for the Assessment of Greenhouse Gas Induced Climate Change’ is a reduced complexity 
carbon-cycle, atmospheric composition and climate model that calculates the annual mean global 
surface air temperature and global mean sea level implications of emissions scenarios, and is linked to 
SCENGEN, a database containing many GCM experiments. The ‘Finite Amplitude Impulse Response’, 
FaIR, is an even simpler model than MAGICC but with updated methane radiative forcing was also used. 
Both were fit against MIPs: with FAIR’s near-term temperature trends potentially being more realistic 
than MAGICC (Leach et al., 2018). FaIR is used in this report.
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This requires transformations in energy, including for renewables to supply 70-85% of 
electricity in 2050, prevention of emissions from industry, and urban and infrastructure, 
global and regional land use transition. However, according to the IPCC models, all 
pathways that achieve 1.5°C by 2100 require carbon dioxide removal (CDR) on the order 
of 100-1000 GtCO2 to compensate for residual emissions.

The IEA World Energy Outlook and energy technology perspectives

The International Energy Agency (IEA) World Energy Outlook (WEO) is an annual 
700-page publication of the large-scale simulations of the global energy system. 
It uses multiple scenarios to present different futures under the changes of key 
variables, including climate policy of governments worldwide, and aims to guide energy 
management, policy, and investment decisions. The IEA WEO 2019 addresses the 
climate question with both a goal oriented and descriptive approach: the Current Policies 
Scenario (CPS) and the Stated Policies Scenario (SPS) model the world’s present path 
without any changes in policy, and incorporating today’s policy intentions and targets, 
respectively. The Sustainable Development Scenario (SDS) maps out a path to meet the 
relevant sustainable energy criteria of the UN’s Sustainable Development Goals (SDGs).28 

The IEA also takes an energy innovation approach to present modelling of pathways to 
highlight areas for critical technology solutions in its Energy Technology Perspectives 
(ETP) reports. Its latest 2020 report is complementary to the WEO scenarios, including 
the SDS, as well as possibilities for faster innovation (IEA, 2020a). In terms of (potentially 
controversial) outcomes, the SDS and the earlier B2DS (Beyond 2 Degrees Scenario) do 
not align with climate goals of the Paris Agreement, and rely heavily on negative emissions 
and carbon capture technology. Cumulative capital expenditure on oil and gas under its 
scenarios are higher than some other estimate, and even in the IEA 450 scenario, by 
2035, the level of oil and gas is a similar level to today (Greenpeace, 2018). 

Other sources of scenarios and climate mitigation modelling

Beyond the IPCC and IEA, energy and transition scenarios have also been constructed 
and deployed by government agencies (e.g., US EPA), NGOs (e.g., Greenpeace, WWF), 
and private companies, especially in the energy sector (e.g., BP, Shell). Their varying 
perspectives provides an array of anticipated mitigation possibilities, emissions levels, and 
technological progress. 

The United States Environmental Protection Agency (US EPA) has for decades relied 
on ‘simple’ IAMs to compute the Social Cost of Carbon (SCC), achieve optimal policy 
outcomes, and calculate the costs and benefits associated with nonoptimal climate 
policies. The DICE IAM (Nordhaus, 2014) has been an influential early approach to cost-
benefit optimisation modelling, seeing the problem of climate change as the problem 
of investing in uncertainty. DICE estimates the costs and benefits associated with the 
mitigation of GHG emissions, aiming to balance near term costs of emissions reductions 
with future benefits of climate avoided damages, aggregating different countries into a 
single level of output, capital stock, technology, and emissions. 

28 An early peak and rapid subsequent reductions in emissions, in line with the Paris Agreement [SDG 
13]; universal access to modern energy by 2030, including electricity and clean cooking [SDG 7]; and 
a dramatic reduction in energy-related air pollution [SDG 3.9]. (IEA 2019)
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As relatively simple IAMs, DICE, FUND (Anthoff & Tol, 2009) and PAGE can incorporate 
climate damage functions via a monetisation of the temperature increase to translate 
physical impact into economic damages and a discount rate, converting a stream of 
economic damages over time into a single value (Greenstone et al., 2013). These have 
provided a wide range of estimates for the optimal SCC, between USD$1 and $2400 (Tol, 
2008), with the huge differences in estimates derived in part from their alternative climate 
damage functions (representing damages from more extreme events e.g. hurricanes, 
floods, wildfires), and their assumptions around the ability of different regions to adapt to 
climate change. They all take highly simplified approaches to estimate the SCC: translating 
emissions into changes in atmospheric GHG concentrations, atmospheric concentrations 
into changes in temperature, and changes in temperature into economic damages. 
However, these models have been criticised for two highly uncertain yet very influential 
elements: firstly, their dependence on the choice of discount rate parameters, which, if 
too high, lead to excessive discounting of the estimates of future damages. Secondly, on 
the scope and design of their damage functions: by omitting global damages beyond the 
US, omitting non-market damages, and omitting the risk for low-probability, high-impact 
catastrophes, this can also lead to underestimates of the SCC (Hänsel et al., 2020).

BP and Shell provide some of the most well-known Energy System models of any private 
company. Shell was one of the earliest to establish scenario analysis in a business context 
in the early 1970s (TCFD, 2017b), and has continued to produce their own scenario 
modelling, as well as joint studies with national institutions that have been very influential 
(used by the Chinese, Singaporean and South African governments among others) (Shell 
and DRC, 2017). In terms of outcomes, Shell’s “Sky” scenario aims to align with the Paris 
Agreement goals, by achieving net zero emissions by 2070, with the first national net zero 
targets met by 2040. High energy demand into the second half of the century is a central 
feature of this model, as is the large scaling-up of solar energy as a primary source, 
coupled with extensive CCS/BECCS -- 10,000 large facilities by 2070 (Evans, 2018). BP 
releases an annual Energy Outlook to explore the energy transition that considers a range 
of scenarios through three lenses: sectors in which energy is used, regions in which it is 
consumed and produced, and the consumption and production of different fuels. While 
BP does not use the SSPs, its scenarios assume growth in living standards, partially offset 
by increasing energy efficiency so that global energy demand grows at 1.2% pa (which 
would roughly align with SSP2). The BP EO 2019 emphasises that its baseline “Evolving 
Transitions” scenario is not consistent with meeting increased energy demand, nor with 
meeting climate goals of lower carbon, with its alternatives for each lens contributing 
towards a “Rapid Transition” instead. Even under Rapid Transition, however, the BP 
scenario remains conservative, where oil and gas account for 50% of primary energy, and 
carbon emissions increase by 7% by 2040 (BP, 2019).

By contrast, climate NGOs and think tanks have tended to be more aggressive in their 
suggested mitigation pathways. Greenpeace’s 2005, 2010, 2012 and 2015 Energy [R]
evolution (E[R]) scenarios (Teske et al., 2015) aimed to be an alternative to the IEA 
WEO scenarios it criticised, with less reliance on CCS than WEO scenarios, has higher 
renewables share, lower fossil fuel use, and lower total energy demand from equivalent 
exogenous population assumptions. The most recent 2015 E[R] uses results from the 
IPCC AR5 for its climate system model but combines this with the Mesap/PlanNet 
simulation model29 for mitigation. 

29 The Mesap/PlanNet which does not include cost optimisation, as other models do, but rather uses 
consistent exogenous definition of feasible developments). Energy Plan, EU.
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The mitigation pathways in Greenpeace scenarios have key characteristics: (1) the E[R] 
and ADV E[R] scenarios discount nuclear, coal and CCS technologies; (2) including 
specific directions for policy implementation, (3) a greater emphasis on energy 
efficiency than equivalent energy systems models, (4) aggressive growth projections for 
renewables, which it validates against past pathways for the real development of global 
cumulative capacity of PV and wind, which it highlights has outstripped all of the less 
aggressive short term projections (Teske et al., 2015). 

Other providers of climate and energy modelling and  
scenarios include:

National institute level:

• IEEJ: Institute of Energy Economics Japan, Outlook 2019-Energy transition and 
a thorny path for 3E challenges, Tokyo, Japan, Oct. 2018 

• EIA: US Energy Information Administration, International Energy Outlook 2017, 
Washington, D.C., United States, Sep. 2017 CNPC: 

• CNPC Economics & Technology Research Institute, Energy Outlook 2050, 2018 

Industry level: 

• Equinor: Energy Perspectives 2018 – Long-term macro and market outlook, May 
2018 

• ExxonMobil: 2018 Outlook for Energy: A View to 2040, Feb. 2018 

• DNV GL: 2019. Energy Transition Outlook. (Produces an independent ‘Energy 
Transition Outlook’ annually, as well as produces regional reports and reports 
relevant to the Maritime Industry)

• IHS: IHS Markit, Rivalry: the IHS Markit view of the energy future (2018-2050), 
Jul. 2018 

International level:

• OPEC: Organization of the Petroleum Exporting Countries, World Oil Outlook 
2040, Sep. 2018 

Academic modelling: 

• Climate econometrics: Climate econometrics is an academic Research Network 
based in Oxford that has produced numerous economic forecasting models of 
the climate system.

• S&P’s “Heat is on”: report quantifies the impact of climate change on the drop 
in GDP per capita following major weather events. This builds on a specialised 
database that gathers the damages, in monetary values, due to major weather 
events across the world (Swiss RE Sigma Explorer database), and a forward-
looking climate model (Climada). S&P Global Ratings developed an ESG Risk 
Atlas, and its Carbon Efficient Indices has been used as a benchmark by the 
world’s largest pension fund GPIF.
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 ● Other uses of climate mitigation scenarios

Determining risks, regulations, and recommendations

Increasingly, there has been an acknowledgement of risks of the changing world on 
global systems: most prominently the financial system that urgently needs more resilience 
to anticipated changes. While on the national scale, this has involved government action 
(Vermeulen et al., 2018), the private sector also faces uncertainty, especially since not all 
net zero targets are supported by detailed sector policy pathways. They must address 
three lenses of risk: 

• physical risk regarding susceptibility to climate shifts and extreme weather patterns 
such as flooding, drought, and fires, 

• transition risk regarding anticipated vulnerability (or advantage) in the light of policy 
and market transformations, and 

• reputational risk of engagement with what are perceived to be environmentally 
harmful activities. 

Transition risk, which has (thus far) been most relevant to strategic and financial 
considerations, can be further divided into three: 

• policy risks, from policies aiming at decreasing GHG emissions in line with the Paris 
Agreement (e.g., carbon pricing) which threaten the viability of carbon intensive 
industries, 

• technology risks, arising from the uncertainty in technological development and 
deployment and 

• legal risks, a function of climate litigation, such as in the context of damages (Ralite 
& Thomä, 2019). 

Demands for stress-testing of investment decisions against multiple futures, which 
requires scenario analysis by companies and financial institutions, have been increasing. 
Alongside the industry-led Task Force on Climate-Related Financial Disclosures (TCFD, 
2017a), the 2018 IPCC SR1.5 also highlights the importance of directing finance towards 
investment in infrastructure for mitigation and adaptation which requires the removal of 
barriers in access to adaptation finance, while national regulatory initiatives such as the 
French Energy Transition for Green Growth Law (2015), regulatory standards bodies such 
as the California Insurance Commissioner’s Office (2018), and investor networks and 
coalitions such as 2° Investing Initiative (Ralite & Thomä, 2019), and now also international 
standardisation bodies, such as the ISO 14097 Working Group (ISO, 2020), have been 
urging for greater use of scenario analysis in assessments of climate-change related risks 
across the board (Ramirez et al., 2017).

Transition and physical risk estimation based on scenario modelling has multiple 
applications to investment, insurance, and credit decisions. Insurance and credit 
industries can act as a barometer of climate risk, establishing values for climate risk 
based on perceived likelihood and severity (Hawker, 2007). 
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For investment, guided direction is critical for not ‘locking in’ carbon, and either ending up 
with stranded assets if policy changes or preventing necessary policy developments to 
move away from carbon. 

Although traditional reference decarbonisation scenarios are not designed for financial 
analysis, industry associations, NGOs and consulting firms have developed guidance and 
tools to assist companies in using climate scenarios and assessing climate risks, including 
to provide sector-specific approaches. 

• Figure 16: Use of Climate Related Scenarios in Company decision-making. From TCFD 

Status Report, Figure 67.

The TCFD reports that by 2018, 76% of organisations surveyed used climate-related 
financial disclosures for decision making, with investing and lending decisions being the 
primary uses. While only 9% of companies disclosed the resilience of their strategies 
considering different climate-related scenarios (TCFD, 2017b), there was an increased 
adoption of scenario analysis (IPIECA, 2018). As recommended by the TCFD, many 
companies have used IEA analysis and the IPCC’s “meta-scenarios” (TCFD, 2017b). Some 
companies combine modelling from several sources (see Oil Search in Table 4). Others 
have produced their own set of socioeconomic scenarios integrated into an IAM. Many of 
the private companies examining these scenarios and models are insurance firms, who by 
their nature may have a particular interest in understanding climate risks.
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 ● Table 4: Utilisation of climate scenarios and modelling by private organisations.

Name Type of 
organisation

Scenarios and 
models used

Uses and output

Oil Search Private 
Company 
(oil and gas 
exploration)

Greenpeace Advance 
Energy [R]evolution, IEA 
450, IEA NPS

• Impact on expenditures, assets, and 
revenues

• Transition risk for specific projects

• Physical risk for facilities

Citi Investment 
Bank and 
financial 
services

Transition risk 
scenario, 2°C and 4°C 
physical risk scenarios 
corresponding to IPCC 
RCP2.6 and RCP8.5

• Transition risk: calculation of scenario-
implied probability of default from key risk 
factors: direct & indirect emissions costs, 
capex and revenues

• Physical risk: incremental change and 
extreme weather events on assets

AIIB (2017) Multilateral 
Development 
Bank in Asia

IEA WEO 450S and 
NPS, UN Advisory 
Group on Energy and 
Climate Change

• Establish what investment trends would 
be needed to reach the Paris Agreement 
goal (e.g. in Renewable Energy, Energy 
Efficiency investments, Power T&D, pollution 
management)

• Establish six guiding principles to guide the 
build-up of the bank’s energy portfolio

HSBC (2020) Commercial 
bank and 
financial 
services

Scenario: Paris NDCs 
for policies, SSP2 for 
population and GDP

IAM: TIAM-Grantham 
MSCI All Country World 
Index ACWI, Vivid 
Economics, Trucost, 
Rystad Energy, IPCC 
SR1.5 2018 

• Company valuation and company-level 
climate related risk and opportunities 

• Ientify common characteristics of ‘climate 
winners’ and ‘climate losers’ across 
scenarios

• Projected changes in credit ratings across 
emissions-intensive industries 

2° Investing 
Initiative 
(Ralite & 
Thomä, 2019) 

Think Tank, 
funded by 
the European 
Commission 
H2020 
Programme

S&P Trucost, IEA B2DS, 
OECD’s “Delayed 
Action”, Mercer, UNEP 
FI

• Stress testing given that ‘too late, too 
sudden’ scenarios are more likely than 
‘smooth transition’

• Produced Energy Transition Risk (ET Risk) 
Project

• Modelled potential credit effects and found 
credit rating movements of 0.5 for utility 
sectors, 2 for cement and 1 for the steel 
sector

Source: TCFD Status Report, 2 Degrees Investing Initiative, HSBC 2020.

Determining adaptation requirements 

Further risks are also encountered through communities, companies, assets, economies, 
and ecosystems exposed to physical risks (both incremental temperature changes and 
vulnerability to extreme weather). 
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The exposure of human and natural systems and their ability to adapt has implications for 
local planning and insurance as well as national, international and private intervention.30 
For this, localised modelling is of prime importance; despite the potential of producing 
huge variation in modelled projections that allows for selection of preferred outcomes 
(Warren-Myers et al., 2018). For example, sea level rise, which in worst-case IPCC 
scenarios is up to 7m by 2100, displacing hundreds of millions of people (Stocker et al., 
2013), demands response from the insurance sector and local planning. An Australian 
national assessment considers 1.1 m by 2100 as its high-end scenario, still finding that 
A$226 billion worth of commercial, industrial, road, rail and residential properties are 
anticipated to be exposed to inundation and erosion hazard (Australian Government, 
2011). Other physical threats include food security risks, biodiversity and species 
extinction risks, human health problems, and population displacement. 

Litigation

Modelling also has a role to play in climate change litigation cases brought before 
courts around the world. These can include topics such establishing causation of harm; 
incorporating climate change risks into investment strategies; forcing disclosure of 
climate risks by government organisations and publicly traded companies, assessing the 
impacts of carbon pricing and stranded assets, which both utilise (and identify neglect 
or manipulation of) transition risk projections.31 Plaintiffs can include companies, NGOs, 
investors, individuals, and government agencies (including institutions such as the US 
Securities and Exchange commission (SEC), for example holding polluting companies 
liable for costs that local authorities had incurred to protect residents from the impacts of 
climate change.32

Assessing the costs and benefits of proposed projects

An indication of expected costs is an invaluable function of climate modelling for 
policymaking and in industry. Benefit-cost IAMs have been used by the US government to 
compute a Social Cost of Carbon (SCC), defined as the incremental damage caused by 
one additional ton of carbon emissions. The monetisation of climate damages (such as 
changes in net agricultural productivity, human health, property damages from increased 
flood risk, and the value of ecosystem services) aim to facilitate the incorporation 
of social benefits of regulation that is expected to reduce these emissions. The US 
Interagency Working Group (IWG) uses the damage function modules of the DICE, PAGE 
and FUND IAMs (see below) to obtain a range of projections of the SCC that must be 
included in all project approvals (IWGSCC, 2010). However, the value of the SCC is heavily 
dependent on the discount rates, and whether global or national damages are considered. 
Scientific literature can also help to assess the size of co-benefits and to maximise these 
and reduce the adverse side effects in climate and sectoral plans and strategies (Lucon 
et al., 2014) and to identify low-cost options through sensitive intervention points (SIPs), 
such as financial disclosure and certain technology investments (Farmer et al., 2019) 

30 Heat stress, landslides, storms, extreme precipitation, inland and coastal flooding, air pollution, 
drought, water scarcity, sea level rise and storm surges can impact on productivity, energy demand 
for cooling, water availability, food security, infrastructure, and agricultural incomes.

31 For example: NYAG (NY state Office of the Attorney General) accused Exxon Mobil in October 2018 
of failing to apply a “proxy cost” of carbon because it would have resulted in “substantial write-downs” 
of Exxon’s assets (Clifford Chance, 2019).

32 City of New York v. BP plc, et al; City of Oakland v. BP plc; Rhode Island v. Chevron Corp.
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Appendix B: additional PTEC 
model details 

This Appendix contains additional information regarding the workings of the PTEC model. 
For the complete methodology, see (Way et al., 2020).

 ● Endogenous technological change

Wright’s Law

Endogenous technological change, referred to as an experience- or learning curve, was 
first formalised by Wright (1936), who showed that the cost of aeroplanes fell as a power 
law of their cumulative production (see Figure 17). “Wright’s law” has since been applied 
to a wide array of contexts, as detailed by Thompson (2012). 

Wright’s law does not prescribe an exact 
causal mechanism; it is an empirical 
relationship that can be widely observed 
and applied. Indeed, because our model 
extrapolates existing trends, the issue 
of causality is not critical to our results. 
However, it is conceptually important to 
clarify that it is not literally ‘experience’ 
(i.e. cumulative production) that 
decreases costs, but rather any number 
of correlated factors. These may differ 
depending on the exact context. One 
potential factor is “learning-by-doing”, 
whereby organisations become more 
proficient in producing a technology 
through practice (Arrow, 1962). Another 
is “economies of scale”, whereby once a 
large quantity of production is reached, 
firms can spread out fixed costs and 
standardise procedures.

Wright’s law is akin to a generalised form 
of Moore’s law, the latter originating 
as an observation that the number of 
transistors in a microchip doubles about 
every two years. 

• Figure 17: Source: Wright (1936).
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A key difference is that under Wright’s law, it would not be ‘time’ per se that causes the 
number of transistors to double, but rather the R&D, knowledge, and proficiency that 
increases with time.

Indeed, in the special case where experience grows exponentially with time, Moore’s and 
Wright’s law are in fact equivalent. Generally, there is an essential difference between the 
two. Taking Moore’s law strictly allows no role for policy or demand since the rate of time 
passing is always constant, and thus the amount of technological change will always be 
constant too. This fact is not the same under a strict interpretation of Wright’s law, since 
we can actively change the amount of experience by stimulating production through 
demand (or other factors correlated to it). For example, if we cut all R&D spending to 
reduce the production of microchips, then we would expect advances in the number of 
transistors to slow down.

This difference allows us to test the two laws against each other. Lafond et al. (2020) do 
this by examining 675 different types of military equipment produced by the US during 
WWII. Here the war marked a sharp change in funding allocations overwhelmingly driven 
by demand rather than costs. Under Moore’s law, this rise in demand should have no 
effect; under Wright’s law, it should. Their analysis suggests an approximately half-to-half 
split between cost decreasing due to exogenous exponential trends (Moore’s law) and 
experience (Wright’s law).

This finding has important implications for modelling endogenous technological change 
within the global energy sector. Under Moore’s law, all scenarios would bring forth the 
same dynamic since the passing of time is identical. Under Wright’s law, scenarios would 
drastically differ between each other. For example, where there is more deployment of PV 
cells, there is more ‘experience’ acquired, meaning that per-unit costs should fall further. 

Moore’s law is much more optimistic under our model. This is because even under a 
Decisive Transition, the growth rate of renewable energy eventually slows down and with 
it the experience that drive’s Wright’s law. Time, however, does not slow down, and so 
prices would continue to drop rapidly, regardless of how mature the renewable energy 
sector becomes. This is empirically demonstrated by Way et al. (forthcoming) in their 
supplementary material.

Applying Wright’s Law to renewable technologies

To forecast learning curves, we want to model the relationship between costs and 
cumulative production (i.e., experience) of a technology over time. To do this we write 
costs as some function of cumulative production, using log differences to express 
everything in terms of growth rates, as per Wright’s law. Let ct be the cost and zt the 
cumulative production of a technology in period t. This gives the following equation:

logct – logct–1 = f(logzt – logzt–1)

Following Lafond et al. (2018), there are two sources of uncertainty that we must 
incorporate into our forecasts. To model random changes in the future we include 
periodic noise shocks ht with IID ht ~N(0,s2

h). Additionally, to show that we do not know 
the true experience exponent w we model this as a variable rather than a fixed parameter. 
This thus gives the following equation:
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Equation 1: logct – logct–1 = –w(logzt – logzt–1)+ht with IID ht ~ N(0,s2
h)

A last component to add is that the above-mentioned random shocks tend to persist 
beyond a single period t as shown by Farmer & Lafond (2016). For example, if there is 
a shortage of materials for PV cells, it may take several years for things to gradually 
return to normal. This can be modelled by using positive autocorrelations, whereby the 
total shock this period ht is a combination of the new shock this period ut plus some 
persistence r of last period’s shock ut–1 (which in turn depends on the persistence of all 
the shocks from period before that). This can be written as:

Equation 2: ht = ut + rut–1 and thus s2
u = s2

h +(1 + r2)

Substituting these in we get our final equation:

Equation 3: logct – logct–1 = –w(logzt – logzt–1)+ ut + rut–1 with IID ut ~N (0,
sh2 

_______

1+r2
)

To solve for r we refer to Lafond et al. (2018), who found that the persistence of 
fluctuations in cost improvements averaged at 0.19 across over 50 different technologies. 
We thus also use this as our estimate across all technologies.

The two remaining parameters are thus the distribution of periodic noise shocks, s2
h and 

the experience exponent, w. We solve for these by calibrating Equation 1 on the full set of 
historical data available, assuming exponential exponents are normally distributed  
w ~ N ( ). This then gives us best estimates for ω, σω, ση . From this, we can then plug 
in our values in Equation 2 to also get the best estimate for σu .

A slight nuance to this comes in the case of nuclear power. As previously outlined, there 
is substantial reason to believe that costs may rise in the future, since the experience 
exponent has been negative across several datasets. However, in line with our general 
conservative approach, we assume that w is close to zero and σu small. This assumption 
means that the Slow Nuclear Transition is somewhat optimistic when comparing it to 
counterfactuals, where solar and wind are rising instead.

Solving for a Cost Path

The above parameters then get estimated through a random sampling process. By 
repeating this a large number of times, we account for inherent future uncertainty and 
ambiguity in evaluating the experience exponent, obtaining a distribution of possible 
outcomes for each given scenario. 

Suppose we wish to forecast the cost of a technology ahead T periods under a given 
scenario (i.e. conditional on certain zt values). First, we randomly pick an exponential 
exponent from w ~ N ( ). We then randomly pick T successive noise shocks from  
ut ~ N(0, s2

u). Together with our zt scenarios, we can thus calculate ct at each step until 
period T. This is a single cost path for a given scenario.

We repeat this whole stochastic process 100,000 times, simulating what would happen 
under different random future shocks and exponential exponents. Combining all these 
cost paths, thus gives an array of possible outcomes, which are distributed according to 
our uncertainty. 
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Outcomes with higher probability predicted by our model will have many cost paths 
around it; outcomes with lower probability predicted by our model will only have outlier 
cost paths around it. 

Forecasting accuracy: mean versus median

Two counteracting factors generally determine forecasting accuracy. Firstly, as the 
forecast horizon t grows, our forecast accuracy decreases. Intuitively, this is because the 
further ahead we attempt to predict, the more critical random shocks become: As time 
progresses, there is more potential for unexpected shocks to diffuse and build on each 
other, thereby deviating from the overall trend. This reason is why the confidence interval 
tends to grow further into the future. By contrast, our forecast accuracy decreases the 
more historical data points m we have to fit parameters. This is because more data helps 
to reduce the overall uncertainty around misestimating our equations.

Lafond et al. (2018) note that for models like Wright’s Law, these two factors combine 
so that forecasting accuracy for the mean scales at t + τ

2
____
m . This equation leads to an 

important dynamic. When we reach a point where we forecast more periods than we have 
historical data on (t > m) then the forecasting error becomes dominated by parameter 
estimation τ

2
____
m  > t. Because this term contains a quadratic, the error then starts growing 

ever more quickly, and the mean deviates from the median. For example, in cases where 
we have 30 data points, the forecast error grows reasonably slowly until about 2050 and 
then grows faster after that.

Experience curves for fossil-fuels

Fossil fuels are placed into a different category because, as outlined above, they appear 
to behave fundamentally differently in having remained at a close to constant price over 
the last century. We thus choose to model it using an autoregressive time series – or 
AR(1) – that can be formally written as follows: 

Xt = fXt – 1 + ∈t + with f ∈ (0,1]; ∈t ~ N(0, s2
∈); k ≠ 0

Here the cost of fossil fuels in period t is dependent on its price in the previous period 
t–1 subject to a random shock ∈t, which again represents the inherent future uncertainty. 
The parameter f determines how quickly such a shock will dissipate over time and s2

∈ 
how volatile these shocks are. Solving, we can see there is a long-term mean κ____

1–φ , which 
represents the constant price. The decision to model fossil fuels using AR(1) appears 
substantiated by the literature. For example, Pindyck (1999) found that fossil fuel prices 
demonstrated a strong mean reversion dynamic to a stochastically fluctuating trend line.

Using historical data, we can thus fit this equation for each fossil-fuel-based technology, 
obtaining estimates for f, s, k accordingly. Since there was a temporary break in the 
price level in the mid-1970s due to the OPEC shock, we decide to calibrate using data 
from 1975 onwards, as this would otherwise skew our results into suggesting that fossil 
fuels are becoming more expensive.
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Note that in theory, we could also apply Wright’s Law, whereby the experience exponent 
would become close to zero after calibrating this variable on historical data. Indeed, on 
short timescales of around ten years or so, such a model behaves approximately the 
same as AR(1). However, over longer timescales, such as in our case where we make 
predictions to the year 2100, these small differences cumulate and predict very volatile 
results. Whilst this did seem appropriate for nuclear power, which has demonstrated large 
fluctuations in price, this contradicts the remarkable price consistency in fossil fuels that 
we observed over the last century. We thus believe that fossil fuels are better captured 
over the long-term by an AR(1) process.

 ● Levelised cost of energy and vintages of capital stock

Each scenario specifies how much energy is produced by a given technology i in a 
particular year t, denoted as qt

i. We are interested in calculating how much it costs to 
deploy this quantity. To measure the cost of a unit of technology we use the LCOE. This 
is defined as the average net present cost of electricity generation for a generating plant 
over its lifetime.

The LCOE for a given technology remains constant throughout the lifetime of a unit of 
technology. This helps make for easy comparison across technologies. However, this 
annuitisation also means that LCOE is not simply the same as dividing annual costs by 
annual production. Annual costs can change drastically year-by-year. For example, all the 
instillation costs happen upfront but LCOEs “spread these out” over a lifetime. LCOE can 
thus be likened to an investor taking out a loan for the total costs of the asset over its 
lifetime and paying that loan back at a certain interest rate.

Whilst the LCOE of given a unit of technology does not change over time, it can change 
across different “vintages” of that same technology. For example, as Section 2 shows, 
there has been a clear trend in PV cells becoming ever cheaper at producing electricity. 
Thus, whilst a PV cell produced in 2020 will have the same LCOE across its lifetime, this 
may be higher than the LCOE of a PV cell produced in 2025.

To work out the cost of producing qt
i, (Way et al., 2020) note that we must “add up the 

individual costs associated with panels of every vin-tage in the installed capacity base 
(each with a different LCOE), as well as any new annual addi-tions”. This occurs for each 
technology as follows.

We assume that each technology’s capital stock has a lifespan Li and functions perfectly 
until it is then removed from the system. For simplicity, we also assume that to begin 
with (i.e., in the year 2020) the existing capital stock had been installed linearly over the 
previous Li periods. Our scenarios then define qt

i for all future periods. Thus, we can 
subtract from the production of capital stock that has already been installed in the past 
and not yet expired (t < Li). From this we can infer how much new capital stock must be 
installed to make up the remaining shortfall. 
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Appendix C: Creating the PTEC 
emission scenarios 

 ● Introduction

The purpose of this appendix is to demonstrate how the estimates of energy and total 
anthropogenic emissions, radiative forcing, and ultimately temperature anomaly presented 
in this report are generated from the PTEC scenarios. The aim is to demonstrate how the 
outputs of the PTEC scenarios are converted to match transition scenarios developed 
by the IEA and the IPCC. This not only allows a comparison of our scenarios with major 
modelling efforts by these key organisations, but also generates emissions scenarios 
relevant to the exploration of climate risk for the other workstreams of the UK-China 
Climate Risk Assessment project. 

Our intention is not to provide emission scenarios that are precise, as the PTEC 
scenarios are not predictions of the future. This is also the case for the both the IEA 
and IPCC scenarios, although the latter uses an ensemble of models to provide some 
measure of uncertainty around their scenarios. The primary goal here is to provide 
defensible estimates of the emissions associated with each of our scenarios, once 
again for comparison purposes, and to examine the potential impact that endogenous 
technological change could have on mitigating climate change. To this end we also 
include our best representation of the uncertainty in our estimates.

Producing emissions scenarios from the PTEC model requires several steps. Firstly, we 
undertake a like-to-like comparison of the PTEC energy system components with those 
provided by the IEA, in the starting year of the analysis, 2018. Secondly, we produce an 
estimate of the emissions generated by the PTEC energy system for every timestep 
in each of the PTEC scenarios. For any components found to be omitted from the 
PTEC model (in comparison to the IEA model), we also develop a trajectory of future 
emissions based on the narrative of the scenario, including bands of uncertainty around 
these components. Thirdly, we conduct a similar like-to-like comparison with the IPCC 
scenarios in 2018. We then add any anthropogenic emissions that are not included in 
the IEA/enhanced PTEC energy system models and produce future projections of these 
additional anthropogenic emissions for the PTEC scenarios, based on the IPCC Scenario 
Matrix. Finally, we project each of the global energy system scenarios through to 2040 
for comparison with the IEA scenarios, and total anthropogenic emissions through to 
2100 to provide a comparison with the IPCC scenarios.
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 ● Calculating the emissions from the global energy system 

The PTEC system was originally designed to generate probability-based estimates of the 
future costs of technology deployments and energy production based on empirical data. 
The model was therefore not necessarily built with emission scenarios in mind. However, 
there is a simple methodology, with a clear set of transparent assumptions, that we can 
use to generate our estimates of the emissions from the components of the energy 
system modelled in PTEC. 

In each of the scenarios the PTEC model calculates the necessary deployment and 
retirement of new technologies to meet a 2% annual increase in supplied useful energy. 
To match total primary energy demands with those of the IEA scenarios requires the 
conversion of final electricity demands to primary energy demands by fuel. Primary 
energy is a difficult concept for non-fossil fuel sources. For the conversion of renewable 
electricity (e.g., renewable energy input for P2X), and the conversion of nuclear electricity 
to primary energy we simply use a 100% conversion. That is, we are not converting 
these technologies back to their primal fuel source 33% from uranium to electricity in 
nuclear reactors or 15% conversion of solar irradiance to electricity from solar PV panels. 
However, a conversion factor in the form of a thermal efficiency was used to convert final 
energy of coal/oil/gas-fired electricity to primary energy of coal/oil/gas. 

Converting back to primary energy demand allows us to generate emission calculations 
by simply multiplying the energy usage (EJ/GWh/Mtoe) of each polluting energy source 
by the emissions intensity for that source. For our emission conversion factors we use 
those presented in the IEA World Energy Outlook Stated Policies scenario to be able to 
match their emissions levels. 

Equilibration with IEA 2018 emissions

The PTEC model is a medium complexity energy systems model, designed purposely to 
reduce the complexity of the energy system to allow the model to be transparent and to 
run quickly (for sensitivity and uncertainty analysis). To this end, some minor components 
of the energy system that were believed to require excessive complexity to be included 
in the PTEC model were excluded. The list of what is included and excluded from PTEC 
are shown in Table 5 below and described in more detail below, sorted by the size of the 
omission. 

• Intermediate/unspecified (9.9%): This refers to fossil fuel consumption, whereby 
energy gets ‘spent’ to produce even more energy. Examples of this include powering 
blast furnaces, petroleum refineries, and coal mines. Overall, such intermediate 
uses account for about 47.5 EJ worth of fossil fuels. Since modelling this is 
highly scenario-specific (depending on how much fossil fuels grow), we make the 
simplifying assumption to exclude this component entirely. Note that the same is not 
done for electricity generation, which is included in our model and through which all 
renewables -- but only some fossil fuels – flow through. 
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• Traditional biomass (5.4%): The only substantial end-use sector not modelled 
are the 26.0 EJ that is mostly being used for cooking and heating. This includes 
technologies such as fuelwood, charcoal, animal dung and agricultural residues. 
We believe this omission is justified for two reasons. Firstly, this sector is shrinking 
in importance, as modern and more efficient technologies become widespread, 
especially in the developing world. Secondly, to model CO2 emissions, it is no clear 
these are necessary as traditional biomass is close to carbon neutral. For example, 
to produce more charcoal over the long-term, one must plant more trees. Thus, even 
if there is an increase in EJ, this does not mean that emissions will increase too.

• Petrochemical feedstock (4.8%): This refers to the 23.0 EJ of fossil fuels currently 
used as raw materials to produce plastics and other industrial products, such as 
lubricants. As these are not used as energy carriers in the usual sense, we exclude 
them from our model.

• Bioenergy/biofuels (2.9%/0.8%): These components are excluded primarily 
because of their high environmental costs per unit of energy. If these sectors were 
to actively grow from their currently small size (13.8 EJ and 3.7 EJ respectively), this 
would not be compatible with a green transition. Additionally, the evidence about 
whether these technologies are commercially viable is mixed. This is therefore not 
something of interest for our analysis, and not included in the Decisive Transition or 
Stalled Transition.

• Heat (2.6%): This refers to the small 12.3 EJ produced from fuel combustion, nuclear 
reactors, geothermal sources, sunlight as well as various industrial processes. It is 
thus more a by-product rather than an energy carrier in of itself. Because of this 
qualitative difference, it cannot easily be included in the same model framework. 
The model thus omits it to maintain simplicity. Where we to incorporate heat in 
our analysis, then there would likely be more energy produced under the same 
processes. This is akin to treating all heat generating technologies as more ‘efficient’, 
which, as per our argument above, implies lower CO2 emissions throughout.

• Other fuels (1.0%): A further 4.7 EJ is currently made up of mostly small and 
nascent technologies. These include solar thermal energy, marine energy, 
geothermal energy, tidal energy, and carbon capture storage. Whilst these all 
currently make up very negligible parts of the global energy system they are often 
cited as potentially critical for a green transition. This may be true, but either due to 
their high location dependency (e.g., geothermal energy) or lack of historical cost 
improvements (e.g., carbon capture storage), we choose not to make them part of 
our analysis. This again is a conservative assumption: our transition scenarios must 
meet the global energy demand without making use of any of these potentially 
promising energy technologies.
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 ● Table 5: Final energy and other major uses in 2018 by sector and 
energy carrier, as listed in the IEA WEO 2019, showing whether each 
component is included or excluded from our model. Each column for 
a given sector is split into two columns, one showing what is included 
and one showing what is excluded.

 

Total emissions estimate In Out Total

t/CO2 26,131,384,522 7,470,033,393 33,601,417,915

Gt/CO2 26.1 7.5 33.6

Percentage 78% 22% 100%

Electricity (Energy sector)

Technology EJ* EJ In EJ Out

Oil 8.0 8.0

Coal 73.5 73.5

Natural gas 38.3 38.3

Nuclear 29.5 29.5

Hydro 15.1 15.1

Biopower 5.6 5.6

Wind 4.6 4.6

Geothermal 0.3 0.3

Solar PV 2.1 2.1

CSP 0.0 0.0

Marine 0.0 0.0

Total 177.0 168.6 8.4

Fraction 95% 5%

Transport (End use sector)

Energy carrier EJ* EJ In EJ Out

Oil 110.1 110.1

Electricity 1.3 1.3

Biofuelds 3.7 3.7

Other fuels 4.7 4.7

Total 119.8 111.4 8.4

Fraction 93% 7%
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Total emissions estimate In Out Total

Industry (End use sector)

Energy carrier EJ* EJ In EJ Out

Oil 12.5 12.5

Coal 33.3 33.3

Natural gas 27 27

Electricity 33.6 33.6

Heat 6 6

Bioenergy 8.9 8.9

Other renewables 0.0 0.0

Total 121.4 106.4 15.0

Fraction 88% 12%

Buildings (End use sector)

Energy carrier EJ* EJ In EJ Out

Oil 13.8 13.8

Coal 5.2 5.2

Natural gas 29.3 29.3

Electricity 42.3 42.3

Heat 6.3 6.3

Bioenergy 4.9 4.9

Traditional biomass 26.0 26.0

Other renewables 2.0 2.0

Total 129.8 90.7 39.2

Fraction 70% 30%

Other uses

Energy carrier EJ* EJ In EJ Out

Electricity 15.5 15.5

Petrochemical feedstock 23 23

Unspecfiied (fossil) 67.2 67.2

Total 235.5 106.9 129.7

Fraction 45% 55%
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Table 6 provides a summary of the missing components and their associated CO2 
emissions in 2018. In total, these components produced 8.1 Gt of CO2 emissions in 2018, 
which represented around 18% of the CO2 emissions from the global energy system in 
2018. Although our ability to match the omitted components exactly is problematic given 
the level of disaggregation available in the IEA data, these are our best approximation 
of the emissions from the 18% of the energy system components that were identified 
as omitted in Table 5. Another difficulty is that the IEA scenarios have changes to the 
emission efficiency factors of their technologies through time. 

To allow us to represent the uncertainty around how these missing emissions should be 
projected into the future for our two PTEC scenarios we generate a band of emissions 
for them. The lower bound of this emissions band is produced by either increasing or 
reducing each of these components at the same rate that the total primary energy 
demand for fossil fuels increase or decrease each year in each of the PTEC scenario. The 
upper bound is produced by applying the annual increases or reductions in each of these 
components from the IEA stated policies scenario. This appears to be a conservative 
estimate of the future fate of these components. For instance, the largest omission (9.9% 
of useful energy) is intermediate fossil fuel usage — whereby fossil fuels are needed to 
generate fossil fuels (e.g., powering coal mines). When fossil fuels are replaced, fewer 
CO2 emissions will be attributed to these components. The more fossil fuel-intensive a 
scenario is, the greater this conservative bias will be.

 ● Table 6: A breakdown of the components of the global energy system 
not represented in the PTEC model with IEA estimates of each 
component’s CO2 emissions in 2018

Energy system component Excluded component 2018 emissions (Gt CO2)

Oil for electricity 0.6

Biofuels for Transport <0.1

“Other fuels” for transport 0.3

Heat in industry 0.5

Heat in buildings 0.5

Bioenergy in buildings <0.1

Traditional biomass <0.1

Petrochemical Feedstock 1.6

Unspecified fossil 4.7

Total 8.1
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Finally, to be able to compare the energy use by fuel source between the PTEC and IEA 
scenarios the missing components in the Decisive Transition are electrified at the same 
rate at which the scenarios phase out dependence on fossil fuels. Normally, the process 
of electrifying final energy would lead to an efficiency improvement. For instance, the 
overall global energy system, we see a 30% reduction in final energy demand required 
by 2100 to meet the same useful energy demands in the Decisive Transition scenario 
compared to the Stalled Transition scenario. However, as these components are likely 
to be difficult to electrify, we have forgone any efficiency gains and transferred the full 
energy demand from the fossil fuel component to its electrified counterpart.

IEA full scenario comparisons

Figure 18 presents the resulting emission outputs for the IEA and PTEC scenarios. The 
most noticeable difference between the scenarios is that the uncertainty associated 
with the PTEC Decisive Transition is much greater. This is purely an artifact of the fact 
that emissions decline much faster in the Decisive Transition scenario than in the Stated 
Policies scenario with both being used to estimate the declines in the components of 
the energy system not included in PTEC. The second noticeable difference is the non-
linear curvature to the PTEC Decisive Transition scenario. The emissions for this scenario 
increase in the first few years as the natural gas network grows to accommodate the 2% 
annual growth in useful energy demand with the growth in renewables not yet able meet 
demand growth. However, when the global factories’ production capacity for renewables 
and associated storage technologies become sufficiently high the emissions begin to 
decline rapidly. Finally, there is a noticeable decline in this growth by around 2035. This 
is due to the additional energy required when transport electrification starts to demand 
more electricity before it is completely decarbonised. 

• Figure 18: A comparison of PTEC to IEA Scenarios global energy system emissions. Source: 

this report and IEA World Energy Outlook 2019.
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Equilibration with IPCC emissions in 2018

To equilibrate the PTEC scenarios with the full anthropogenic emission scenarios of the 
IPCC scenarios we must develop a method for adding non-energy system emissions. 
This is more difficult than equilibrating with the IEA modelled outputs, and hence involves 
greater uncertainty. PTEC is a model of the global energy system. It therefore provides 
little information about how other sources of anthropogenic greenhouse gas emissions 
could evolve in the scenarios generated using PTEC. We provide here the details of the 
steps we have taken to produce the results presented in Section 4. 

Firstly, we provide some background information on the IPCC emission scenarios 
presented in this report. 

The Scenario Matrix architecture

To achieve some standardisation and comparability across climate research, two main 
sets of future scenarios or trajectories that were initially developed concurrently but 
separately, were combined into what is referred to as the Scenario Matrix Architecture. 
The first set of scenarios, the Representative Concentration Pathways, provide 
estimates of the radiative forcing on the climate system of various greenhouse gas 
emission pathways, and the other, the Shared Socioeconomic Pathways, provide 
plausible socioeconomic scenarios of global development that might produce such 
emission pathways (van Vuuren et al., 2014). These will be described in some detail here 
as the outputs of the modelling efforts presented in this report have been designed to be 
directly comparable to these standardised scenarios. 

The first set of scenarios, known as Representative Concentration Pathways (RCPs), have 
been the standard reference to classify the stringency of different warming limits. They 
provide projections of the trajectory and cumulative greenhouse gas concentrations, with 
consequent radiative forcing. They originally ranged from the lower emission pathway 
RCP2.6 to the worst-case pathway RCP8.5, with the associated numbers representing 
the total radiative forcing in year 2100 relative to 1750 (from 2.6 W/m² to 8.5W/m²). This 
range corresponds to an increase in global mean temperatures above pre-industrial levels 
of around 2°C to 4.3°C in 2100. 9 An additional RCP1.9 was introduced following the Paris 
Agreement and captures pathways that achieve the 1.5 °C Paris warming target with 
some certainty. 

For each category of emissions, RCPs contain a set of starting values and future 
emissions and include all greenhouse gas (GHG) emissions such as carbon dioxide (CO2), 
water vapor, methane (CH4), nitrous oxides (NOx), and ozone (O3), aerosols, such as soot 
and dust, which can reduce warming. They can also include natural sources of radiative 
forcing change, including sun cycles and volcanic activity (which can also temporarily 
reduce warming). The RCPs provide information on all components of radiative forcing 
that are needed as input for climate modelling and atmospheric chemistry modelling 
(emissions of greenhouse gases, air pollutants and land use), that were constructed 
through a collaboration of the integrated assessment model (IAM), impacts, adaptation, 
and vulnerability (IAV) models; and climate modelling (CM) communities.
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Initially the RCPs were created using emissions based on the Special Report on 
Emissions Scenarios (SRES) which cover a wide range of key drivers of future emissions 
(IPCC, 2000). This original ensemble of RCP scenarios were selected from the literature 
that existed at the time, and corralled into the RCPs on the basis of their emissions and 
associated concentration levels (van Vuuren et al., 2011). However, this approach for 
developing scenarios meant there was no consistent set of socio-economic narratives 
associated with each of these RCPs. 

Since CMIP5 and IPCC AR5 
the RCPs have been matched 
with a set of social-economic 
scenarios known as the Shared 
Socioeconomic Pathways (SSPs). 
They give a consistent ‘baseline’ 
storyline of future population, 
economic growth, societal 
attitudes, technology costs and 
the arena of international policy, 
that are independent of mitigation 
possibilities. Each is based 
on a different narrative, with 
qualitative ‘low’, ‘medium’, or ‘high’ 
capabilities to mitigate or adapt 
(see Figure 19).33 

• Figure 19: SSPs classified by challenges for mitigation  

and adaptation. Source: Climate change scenarios. 

The SSPs were originally developed separately from the RCPs, portraying the outcomes 
in terms of emissions given an absence of climate policy. However, they were designed 
to be complementary and during the CMIP5 process were eventually combined with 
the RCPs to form a Scenario Matrix (Figure 20). This was achieved using “shared policy 
assumptions” around the speed of international collaboration on climate policy in each of 
the SSPs, and a climate policy “lever”.

33 SSP1 is the Sustainability scenario: a world in which the global population peaks mid- century, and 
there are strong and flexible global, regional and national institutions; SSP2 is the Middle of the Road 
scenario: a continuation of economic and technological trends with slow process to achieving the 
SDGs; SSP3 is a Resurgent Nationalism scenario: regional rivalry and conflicts with weak global 
institutions, and fossil fuel dependence; SSP4 is an ever-increasing Inequality scenario: modelling 
a growing divide between prosperous and well educated societies and the global poor; and lastly 
SSP5 is the rapid growth scenario: a world in which economic output and fossil fuel energy use are 
unconstrained by environmental consequences (van Vuuren et al., 2014).

https://climatescenarios.org/primer/socioeconomic-development
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Each IAM can combine socioeconomic scenarios and either mitigation-adaptation 
assumptions or emissions targets to produce this scenario matrix to provides a range 
of climate impacts for differing abatement rates. The underlying IAMs help identify 
socioeconomic and technological conditions under which the pathways may be attained 
in the real world. Some of the more extreme emissions scenarios are infeasible for 
certain IAMs (or all IAMs) given their parameterisation of the constraints under certain 
socioeconomic scenarios.34 (For example, no IAM is able to achieve the climate goals of 
RCP2.6 in the SSP3 scenario – shown in red in Figure 20). This Scenario Matrix approach 
was central to the IPCC AR5, in which six IAMs were used 35 (see Figure 2) to generate 
24 baseline scenarios, from which a single ‘marker’ was selected for each SSP and 
aligned with emissions targets in the form of the RCPs.

• Figure 20: The scenario matrix. Source: Carbon Brief, based on (Rogelj, Popp, Calvin, 

Luderer, Emmerling, Gernaat, Fujimori, Strefler, Hasegawa, Marangoni, Krey, Kriegler, Riahi, 

van Vuuren, et al., 2018).

34 These include human and financial resources, governance coordination, uncertainty about projected 
impacts, different perceptions of risk, competing values, absence of key leaders and advocates 
and limited monitoring tools, as well as “shared policy assumptions” about how quickly international 
collaboration on climate change could occur within each SSP.

35 Six IAMs used: AIM-CGE, GCAM, IMAGE, MESSAGE-GLOBIOM, REMIND-Magpie, and WITCH-
GLOBIOM. IPCC AR5 WGIII.

https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change
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Accounting for missing non-energy sector components

As shown in Figure 21 the energy system is responsible for around three quarters of the 
world’s greenhouse gas emissions. Other major sources of anthropogenic emissions 
include Agriculture, Forestry and Land Use (AFOLU), waste management and GHG 
emitting chemical industries such as cement production. It includes non-CO2 emissions 
from the energy sector, such as methane, nitrous oxides, and aerosols. The latter are 
problematic as aerosols can actually reduce the impact of warming by reflecting long-
wave radiation from the sun and are a primarily produced from energy generation using 
fossil fuels and volcanoes. 

• Figure 21: Gobal greenhouse gas emissions by sector for 2016. Source: Our World In Data.

When compared to the IEA emission estimates (Figure 22) we see that there are 
approximately 10 Gt of additional CO2 equivalent greenhouse gas emissions in the IPCC 
scenarios that are not included in the IEA system model. Our approach to dealing with 
this uncertainty is to embrace it. That is, to incorporate the entire range of non-energy 
emissions from the IPCC SR1.5 Scenario Matrix in our estimates of non-energy emission 
for the PTEC scenarios. Future agriculture, forestry, and other land use (AFOLU) changes 
will be heavily dependent on key socio-economic drivers such population growth and 
economic growth. As each of the PTEC scenarios assumes a 2% annual increase in 
useful energy demand we are limited to socio-economic scenarios that achieve a similar 
consistent energy demand increase. Unfortunately, most of the SSPs involve reduced 
useful energy demand. 

https://ourworldindata.org/emissions-by-sector
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Only the SSP5 “Take the Highway” scenario has a comparable increase in useful energy 
demand. Thus, this does not provide us with a range of population and economic growth 
with which to capture the uncertainty around AFOLU changes that could occur in both 
PTEC scenarios. To solve this problem, we instead apply the emissions of the entire range 
of AFOLU estimates from the IPCC Scenario Matrix. 

• Figure 22: The comparison of greenhouse gas emissions in 2018 between the PTEC Model, 

the IEA World Economic Outlook 2019 and the IPCC 1.5 degrees Special Report. Sources: 

This report and (IEA 2019); 1. IPCC SR15 Full report p.113, 2. CMIP6, 2018 figures.

A similar approach is taken to incorporating non-CO2 emissions. Unlike the AFOLU 
emissions, most of the non-CO2 emissions are associated with the energy system, 
particularly the generation of methane from leakage and aerosols from power generation 
in the high fossil-based Stalled Transition scenario. For reasons unclear, the IEA 
scenarios only provide CO2 emissions. However, the degree to which such non-CO2 
emissions will be problematic will depend on the efforts of the society and the fossil fuel 
industry to reduce these additional emissions through leakage and pollution reductions 
efforts and legislation. 

To accommodate the inherent uncertainty in the extent to which society will manage this 
problem in the future, we include the non-CO2 emissions estimates for a range of RCPs 
for each of the PTEC scenarios. For the Decisive Transition scenario, we add the range 
of estimates of non-CO2 emissions from RCP2.6 and RCP 4.5. To reflect the higher fossil 
fuel outputs in the Stalled Transition scenario, we add the range of estimates of non-CO2 
emissions from RCP6.0 and RCP8.5. SO2 levels were matched to RCP2.6 and RCP8.5 for 
the Stalled and Decisive Transition scenarios, respectively.

Finally, the bands of uncertainty created for each scenario from these additional full 
anthropogenic emissions are added to bands of uncertainty created by the addition of the 
missing components found during the equilibration with the IEA scenarios. 
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Calculating radiative forcing and global warming for each scenario

Finally, the FaIR climate emulator36 was used to convert the anthropogenic emissions 
estimated for enhanced Stalled and Decisive Transition scenarios to radiative forcing and 
warming calculations (Boucher & Reddy, 2008; Joos et al., 2013; Millar et al., 2017b). A 
equilibrium climate sensitivity (ECS) of 2.7°C, a transient climate response (TCR) of 1.6°C, 
as given in (Millar et al., 2017a), and a base rate of 0.057 W.m-2 of natural forcings were 
included beyond 2010. 

The estimated radiative forcings from each of these scenarios are shown in Figure 23 
along with those of three IPCC scenarios, SSP5-8.5, SSP1-2.6 and SSP1-1.9. The values 
shown for the IPCC scenarios are the range of FaIR mean radiative forcings values from 
the five IAM models (AIM/CGE 2.0, GCAM 4.2, IMAGE 3.0.1, REMIND-MAgPIE 1.5 and 
WITCH-GLOBIOM 3.1) taken from the IIASA 1.5degrees Special Report database.37 The 
equivalent warming scenarios are presented in Section 4. Readers should be aware that 
the FaIR model is a regarded as providing a reasonable fit to the IPCC Global Circulation 
Models for lower emission pathways and emulates near-term temperature trends more 
realistically than MAGICC (Leach et al., 2018), but underestimates the temperature 
response for RCP8.5 (Smith et al., 2018). Finally, readers should note that the disparity 
that can be seen in Figure 23 between the PTEC Scenarios and the IPCC Scenarios 
between the years 2005 and 2018 are due to the PTEC scenarios using actual data to 
2018 and the IPCC scenarios using simulations that begin in 2005. 

• Figure 23: The radiative forcing generated by the two enhanced PTEC scenarios in 

comparison to the IPCC SSP5-RCP8.5, SSP1-RCP2.6 and SSP1-RCP1.9 scenarios. Source: 

this report and IPCC 1.5 degrees special report (2018).

36 Using the ECM_OxfordSimpleIAM.xls tool version 0.2.

37 IAMC 1.5°C Scenario Explorer hosted by IIASA.
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Appendix D – Estimates of 
physical climate damages 

 ● Climate damages analysis results

To provide a comparison of the estimated physical damages associated with the two 
PTEC scenarios we applied the range of calculated global emissions from the Stalled 
and Decisive Transition scenarios to the FUND-Hector model (Anthoff & Tol, 2013; Hartin 
et al., 2015). We incorporate some uncertainties included in the FUND-Hector climate 
module and damage module and apply a Monte Carlo method to randomly sample the 
uncertainty in the associated parameters with 10,000 simulations. The total global climate 
damage estimates are shown in Figure 24(a), and these damages as a fraction of global 
GDP Figure 24(b), assuming the GDP growth associated with the SSP5 Baseline scenario 
(which is shown in Appendix C to be the IPCC scenario closest to the useful energy 
growth applied to both the Stalled and Decisive Transition scenarios). 

The mean global climate damage under the Stalled Transition scenario is estimated 
at nearly 13 trillion dollars at the end of this century, which accounts for about 1.5% of 
global GDP. Conversely, the estimated average global climate damages under Decisive 
Transition scenario are close to zero in year 2100. Integrating over the century the 
.Decisive Transition is estimated to avoid over 334 trillion dollars in climate damages from 
year 2020 to 2100. 

The uncertain around estimates according to the FUND-Hector model have the 95th 
quantile of global climate damage in year 2100 under Stalled Transition scenario, at about 
4% of global GDP, much higher than the average climate damage. However, it should be 
noted that the estimates for climate damages from the FUND model are considered quite 
conservative. An application of the empirical analysis of warming impacts on GDP from 
Burke et al. (2015) to the SSP Baseline scenario (which best matches the useful energy 
growth of the Stalled and Decisive Transition scenarios) provides estimates for climate 
damages in 2100 of around $520 trillion dollars (Cohen et al., 2020), close to 50 times 
the estimate given here. 

The FUND-Hector model subdivides climate damage into 15 categories (appendix table 
1), including the economic damage and non-economic damage. We analyse the climate 
damage in different sectors. Under Stalled Transition scenario, the impact of climate 
change on cooling energy demand is the main source of climate damage, which is about 
5.7 trillion in year 2100 (about 45% of total climate damage). The agriculture sector 
benefits from the climate change before 2075 due to the of CO2 fertilisation effect but 
suffers from climate change after then. 
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By the end of the century the climate damage in the agriculture sector accounts for about 
25% of total climate damage under Stalled Transition scenario. The climate damage from 
loss of species and water resources is also significant under Stalled Transition scenario. 
For the Decisive Transition scenario, the agriculture sector continuously benefits from 
climate change to the end of the century, which offsets the negative impacts of climate 
change on energy demand, water resource, and biodiversity. 

• Figure 24: Global climate damage under Decisive Transition and Stalled Transition 

scenarios in this century. (a) Total climate damage in constant $2019. (b) Climate damage 

as the fraction of global GDP assuming a SSP5 baseline economy. The climate damage 

estimated is uncertain. The pink region in each figure represents the results fall between 

25th and 75th quantiles, the grey region represents the 5th and 95th quantiles. The red line 

and blue line represent the median estimate and average estimates respectively.

 ● The FUND-Hector model

We use the FUND-Hector model to estimate the climate damage under Decisive and 
Stalled Transition scenario. The FUND-Hector model is constructed by coupling the 
Climate Framework for Uncertainty, Negotiation and Distribution (FUND) model and a 
simple climate model Hector. The FUND model is widely applied to estimate the climate 
impacts in different regions and sectors, as well as to measure the Social Cost of Carbon 
(SCC). 
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We apply the FUND version 3.9 in this study, which include 16 regions and 15 sectors.38 
The Hector model is an open-source climate model developed by Pacific Northwest 
National Laboratory to project key climate variables (GMST, sea level rise, CO2 
concentration) caused by GHG emissions. 

The FUND-Hector model includes parameters for which there is a great deal of 
uncertainty and regional differences. In the climate model Hector, we mainly consider 
the uncertain climate variable equilibrium climate sensitivity (ECS), and randomly sample 
the ECS from its AR5-consistent distribution as the input of Hector model. For the FUND 
model, we retain all the uncertain provided for the coefficients in damage functions. We 
use the Monte Carlo method to consider these uncertainties and run the FUND-Hector 
model 10,000 times for each scenario which produces the distributions of climate 
damage shown in Figure 24. 

Scenarios and data

Both scenarios provide estimates of anthropogenic carbon dioxide (CO2), methane (CH4) 
and aerosols (e.g., SO2) emissions from 1765 to 2100, which are input into the Hector 
model. The Hector model also requires other GHG emissions, such as N2O, PFC and 
HFC. We use the emissions from the similar RCPs as supplements. For Decisive Transition 
scenario, we use those from RCP2.6 and for Stalled Transition scenario, we use those 
from RCP8.5. The FUND-Hector model also requires socio-economic assumptions to 
estimate climate impacts. These socio-economic assumptions include GDP, population, 
and energy demand. The Decisive Transition scenario and Stalled Transition scenario 
are characterised by rapid economic growth and high energy demand in the form of 2% 
p.a. useful energy growth. To replicate this we adopt the socio-economic assumptions of 
SSP5 in the shared socio-economic pathways database for our analysis, which achieves a 
very similar 2% p.a. useful energy growth.

38 Water resources, Forests, Heating energy demand, Cooling energy demand, Agriculture, Dry costs, 
Protect costs, Enter costs, Hurricanes, Extra tropical storms, Species loss, Death costs, Morbidity 
costs, Wetland costs
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Glossary

Term Definition

Back-test The process of testing a predictive model using historical data

Business-as-usual A scenario in which the world continues on its “normal” trajectory, even 
though something unpleasant (like climate change) might happen

Carbon Capture and 
Storage (CCS)

The process of capturing, transporting, and disposing of waste carbon 
dioxide, such that it will not enter the atmosphere. This is primarily done 
to remove carbon dioxide from industrial and power generation flue gas; 
more recently there has been progress to remove carbon dioxide from 
the atmosphere directly

Climate Action 
Tracker (CAT)

The Climate Action Tracker is an independent scientific analysis that 
tracks government climate action since 2009 and measures it against 
the globally agreed Paris Agreement. https://climateactiontracker.org/ 

Climate Mitigation 
Models

This report uses this term to refer to a series of energy system models 
and ‘process-driven’ IAMs, such as those used by the IEA and IPCC that 
provide information to decision-makers on feasible climate mitigation 
scenarios.

Decisive Transition A scenario used by PTEC to model a more environmental outcome 
than under the Stalled Transition. Under the Decisive Transition, energy 
services grow at the same rate, resolute policy and investment action 
maintains the deployment of renewable technologies near their current 
rates for another decade before they relax to the system-wide growth 
rate of 2% per year. 

Deployment rate The rate at which an energy technology is deployed and thus gains 
experience. For example, how many gigawatts of nuclear power 
generation is built each year

Direct-use primary 
energy resources

Forms of energy that do not need to be necessarily converted before 
being used. In PTEC the three direct-use resources are oil, coal, and gas

Earth System Model A model that incorporates various physical processes to simulate the 
earth’s climate. This includes explicitly the movement of carbon and 
are thus essential to capturing the effects of climate change. It may be 
incorporated into an Integrated Assessment Model

Electric vehicle (EV) A mode of transportation that is powered by electricity, rather than the 
common internal combustion engine that derives its energy from fossil 
fuels. 
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Term Definition

Electricity generation 
technologies

Technologies that generate electricity as a primary energy. In PTEC 
the seven technologies considered are coal, gas, nuclear, hydropower, 
biopower, wind, and solar PV

End-use sectors Sectors of the economy that use the final energy produced. In PTEC 
the three sectors considered are transportation, industry, and buildings 
-- making up 83% of the current total

Endogenous 
Technological 
Change (ETC)

When the rate of technical progress is determined within a model, rather 
than being assumed fixed (exogenous)

Energy carriers Forms in which energy can be transported from generation to final use. 
In PTEC the five carriers considered are oil, coal, gas, electricity, and 
P2X fuels

Energy System 
Model

A model that captures the human use of energy, potentially including 
technologies, prices, end-use sectors. They can be used to evaluate the 
greenhouse gases produced by an economy and are thus essential to 
capturing the effects of climate change. It may be incorporated into an 
Integrated Assessment Model

Experience curve The relationship shown when we plot the logs of total/cumulative 
experience and cost per unit against each other

Experience exponent 
/ Learning rate

Defined as the exponent of log cost over log experience. It is used 
to capture the rate at which learning translates into cost savings. 
Using Wright’s Law, we can derive it as follows: (Cost per unit) = (Total 
Experience) ^ (Experience Exponent). Thus (Experience Exponent) = 
(Cost per unit)/(Total Experience)

Fifth Assessment 
Report (AR5)

A report organised by the IPCC to provide an update of knowledge on 
the scientific, technical, and socio-economic aspects of climate change

Final energy A measure of energy that is in usable form, such as gasoline or 
electricity. It will then be converted to useful energy

Final Energy 
Consumption (FEC)

The total amount of final energy used in a system. It is relevant in our 
analysis for determining if the demand in useful energy is satisfied

Greenhouse Gas 
(GHG)

Gas that absorbs and emits radiant energy within the thermal infrared 

range, causing the greenhouse effect. The primary gases are H20, CO2, 
and CH4, N20, and 03.

Gross Domestic 
Product (GDP)

A monetary measure of the market value of all the final goods and 
services produced in a specific time period. It is commonly used to 
assess the wealth or size of an economy

Integrated 
Assessment Models 
(IAM)

A modelling approach that combines the main features of society and 
economy with the biosphere and atmosphere into one framework. It 
thus combines many different systems and their interactions

Intergovernmental 
Panel on Climate 
Change (IPCC)

Intergovernmental body of the United Nations for assessing the science 
related to climate change
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Term Definition

Intermittency 
problem

The problem faced by non-dispatchable renewables by producing 
varying levels of energy at different times, causing risks of major 
blackouts. For example, Solar PV may produce surplus energy during 
the summer, but a deficit in winter. Storage technologies are the key 
feature of the PTEC model used to resolve the intermittency problem

International Energy 
Agency (IEA)

An international intergovernmental organisation established in 1974 
to maintain the stability of the international oil supply. It produces the 
annual World Energy Outlook report

Learning by doing A concept in Economics whereby productivity gains are achieved 
through increased practice. It was used by Kenneth Arrow to design 
endogenous growth theory

Least-cost 
optimisation

The process whereby a cost-model optimises over the space of all 
feasible scenarios to find the one with the lowest cost. Our PTEC 
scenarios are not derived from such a process and thus may represent 
a lower bound of the actual value from accelerating a green transition

Levelised Cost of 
Electricity

Defined as the net present value of the generated electrical energy 
over the lifetime of a electricity generating plant. It is used to compare 
different methods of electricity generation on a consistent basis

Model 
Intercomparison 
Projects (MIP)

Attempts to compare and evaluate different models, often using a 
standard experimental framework. This can be help identify each 
model’s strengths and weaknesses as well as identify why they make 
different projections. For climate change, the most prominent example 
of this is the Coupled Model Intercomparison Project (Phase 6).

Moore’s law The observation that the number of transistors in a dense integrated 
circuit doubles about every two years

Nationally 
Determined 
Contribution (NDC)

Agreed upon efforts by each country of the Paris Agreement to reduce 
their national emissions and adapt to the impacts of climate change. 
This is intended to limiting warming to 1.5 to 2 degrees Celsius above 
pre-industrial levels

Power-to-X fuel (P2X) A collection of electricity conversion, energy storage, and reconversion 
pathways. X stands for any form of chemical storage, such as hydrogen, 
ammonia, or methanol. They are used to store surplus electric power, 
typically during periods where fluctuating renewable energy generation 
exceeds load

Paris-compliant A scenario or world outcome whereby we limit global warming to 1.5 to 2 
degrees Celsius above pre-industrial levels

Policy Evaluation 
Models (PEM)

Models that use an underlying scenario to explore feasible pathways for 
mitigating climate change, such as ‘process-driven’ IAMs. This contrasts 
with the Policy Optimisation Models

Policy Optimisation 
Models (POM)

Models that determine the (globally) optimal pathway from the 
perspective of a social planner. This contrasts with the Policy Evaluation 
Models
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Term Definition

Policy Mood Music The current range of policies being considered by decision-makers, 
including common assumptions and beliefs underlining these policies

Floor Cost Set a lower bound for the costs that specific technology may attain over 
time. These can be hard bound or soft bound (i.e. asymptotic) and are 
used in several Climate Mitigation Models

Primary energy A measure of energy as found in nature, such as the blocks of coal or 
barrels of crude oil. It will then get converted to final energy

Primary-to-
final conversion 
efficiencies

The fraction of primary energy that is converted to final energy. For 
example, how much energy in a barrel of crude oil will be successfully 
transferred to power a internal combustion engine (as opposed to how 
much is lost on the way). Note that this may differ across technologies 
and across sectors.

Probabilistic 
Technological 
Change Model 
(PTEC)

A model produced by Way et al. (2020) to evaluate the cost of different 
global energy systems. It is used to derive the Decisive and Stalled 
Transition in our analysis

Process-driven A term used to describe an IAM that quantifies future developmental 
pathways, including detailed sectoral information. These are frequently 
used by the IPCC, with prominent examples including IMAGE, 
MESSAGEix, and WITCH-GLOBIOM

Radiative forcing The difference between solar irradiance absorbed by the Earth 
and energy radiated back to space. It is the scientific basis for the 
greenhouse effect and thus a major determinant of climate change

Replacement rate The rate at which deployed energy technologies expire and thus 
need to be replaced, to maintain the same level of energy generation. 
It is usually determined by the expected lifetime of a current energy 
generation system. For example, if we assume that a given wind turbine 
has a lifetime of 25 to 50 years, the replacement rate of such structures 
would be 2-4% per year.

Representative 
Concentration 
Pathways (RCPs)

Four different greenhouse gas concentration trajectories They 
are commonly used to in climate modelling together with Shared 
Socioeconomic Pathways, including for the IPCC’s AR5

Shared 
Socioeconomic 
Pathways (SSP)

Five different scenarios of projected socioeconomic global changes up 
to 2100. They are commonly used to in climate modelling together with 
Representative Concentration Pathways, including for the IPCC’s AR5. 
For our analysis, we mainly focus on SSP1 and SSP5 to contrast the 
Decisive- and Stalled Transition respectively

Slack variable A variable that is added to an inequality constraint to transform it into 
an equality. In PTEC scenarios, gas electricity is used to make up any 
shortfall in the 2% per annum growth in useful energy (e.g. if renewables 
and fossil fuels grow useful energy by 1.8%, gas electricity will make up 
the remaining 0.2%)
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Term Definition

Socio-technical 
transitions (STT) 

The social and technical aspects facing an energy transition, such 
as infrastructure requirements, regulations, and organisation. These 
aspects are not explicitly considered in the PTEC model

Stalled Transition A scenario used by PTEC. Under the Stalled Transition, the current 
energy mix remains approximately constant, whilst useful energy still 
grows by 2% per annum

Stated Policies 
Scenario (SPS)

A scenario used by the IEA in its most recent World Energy Outlook 
report. It considers only specific policy initiatives that have already been 
announced and projects these forward to 2040

Stochastic Property of being well described by a random probability distribution. 
The opposite of this is deterministic.

Stranded Assets Defined as assets that “have suffered from unanticipated or premature 
write-downs, devaluations or conversion to liabilities”. In the context of 
climate change, this may be for example oil reserves that will no longer 
be used in a low-carbon economy

Sustainable 
Development 
Scenario (SDS)

A scenario used by the IEA in its most recent World Energy Outlook 

report. It is defined as a future where we hit global net zero in CO2 by 
2070 and also fulfil the key energy-related goals of the United Nations 
Sustainable Development Agenda

Total Primary Energy 
Demand (TPED)

The total amount of primary energy produced in a system. It is relevant 
in our analysis for determining how many carbon emissions are released 
under a given scenario

United Nations 
Climate Change 
Conference (COP26)

Yearly conferences held in the framework of the United Nations 
Framework Convention on Climate Change. In 2020, the 26th 
conference was intended to be held in Glasgow under the presidency of 
the UK. Due to Covid-19 it has not been postponed to November 2021.

Useful energy The fraction of energy that is converted to useful purposes, such as 
moving a car or lighting a building. For both PTEC scenarios, we assume 
a 2% per annum growth rate in useful energy

Variable renewable 
energy (VRE)

Renewable energy that is non-dispatchable due to its fluctuating 
nature and may thus be limited by the intermittency problem. The main 
examples for our analysis include wind- and solar power.

World Energy 
Outlook (WEO)

An annual report by the International Energy Agency. It is widely 
recognised as the most authoritative source for global energy 
projections and analysis. We use it throughout the report and to draw 
important comparisons to PTEC

Wright’s law A relationship whereby cost declines as a function of cumulative 
production. It was first observed by Theodore Paul Wright, who 
observed that labour requirement fell by 10-15% for every doubling of 
airplane production. It has since been applied to many more areas
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