The Smith School of Enterprise and the Environment (SSEE) was established with a benefaction by the Smith family in 2008 to tackle major environmental challenges by bringing public and private enterprise together with the University of Oxford’s world-leading teaching and research.

Research at the Smith School shapes business practices, government policy and strategies to achieve net-zero emissions and sustainable development. We offer innovative evidence-based solutions to the environmental challenges facing humanity over the coming decades. We apply expertise in economics, finance, business and law to tackle environmental and social challenges in six areas: water, climate, energy, biodiversity, food and the circular economy.

SSEE has several significant external research partnerships and Business Fellows, bringing experts from industry, consulting firms, and related enterprises who seek to address major environmental challenges to the University of Oxford. We offer a variety of open enrolment and custom Executive Education programmes that cater to participants from all over the world. We also provide independent research and advice on environmental strategy, corporate governance, public policy and long-term innovation.

For more information on SSEE please visit: www.smithschool.ox.ac.uk

The views expressed in this paper represent those of the authors and do not necessarily represent those of the Smith School or other institution or funder. The paper is intended to promote discussion and to provide public access to results emerging from our research. It may have been submitted for publication in academic journals. It has been reviewed by at least one internal referee before publication.
Vulnerability to Climate Change: Evidence from a Dynamic Factor Model*

Haroon Mumtaz1 and Fulvia Marotta2

1Queen Mary University of London
2University of Oxford

This version: July 27, 2023.

\textbf{Abstract}

Using a dynamic factor model with stochastic volatility, we examine the synchronization of temperature and precipitation changes across countries and regions. Firstly, the model allows us to quantify the extent of the increase in global temperatures. Secondly, it offers a unique measure of how each country’s temperatures align with this common global movement, translating into a robust indicator of exposure to global warming. Our findings reveal that a common factor explains a significant portion of temperature variance globally, with the largest contribution observed in sub-Saharan Africa, Latin America, and Asia. Additionally, the common factor accounts for the increase in temperature levels across these regions. In contrast, precipitation fluctuations exhibit more localized patterns. We find that countries with higher GDP per-capita tend to have lower exposure to global temperature changes.

\textbf{JEL Classification}: Q54, Q58, E32, E37, O13, O44
\textbf{Keywords}: Climate change, Temperatures, Economic Vulnerability, Global Warming, Dynamic factor model.

*This research was supported by the United Kingdom Foreign, Commonwealth and Development Office through the Climate Compatible Growth Programme and the ClimateWorks Foundation.
Contents

1 Introduction 3

2 Empirical Model and Data 5
 2.1 Empirical model 5
 2.2 Identification and estimation 6
 2.3 Data 7

3 Results 8
 3.1 Factors 8
 3.2 Contribution to climate fluctuations 8
 3.2.1 Vulnerability and country characteristics 9
 3.2.2 Robustness 11

4 Conclusions 12

A Appendix A: Additional Results and Robustness Checks 23
 A.1 Contribution of regional factor to temperature variance 23
 A.2 Robustness checks 23
 A.2.1 Fat tails 23
 A.3 Two factors 23
 A.4 Longer Lags 24

B Gibbs Sampling Algorithm 24
 B.1 Priors 25
1 Introduction

Climate change is increasingly a matter of concern due to its significant impact on macroeconomic fluctuations. Recent papers have emphasized the adverse effects of rising temperatures and climate variability on real economic activity, particularly in low-income countries (Alessandri and Mumtaz (2022), Dell et al. (2012)). However, the uncertainty surrounding the pace of climate change and its potential long-term impacts poses challenges for researchers, making it difficult to draw definitive conclusions about its effects on the economy. Our work closely aligns with this growing literature that aims to test these channels and their macroeconomic consequences.

Regarding the impacts of global warming, specifically the gradual rise in average temperatures, the literature consistently indicates that such increases have adverse effects on the economy. However, it is important to note that the extent of these effects varies significantly across countries due to their unique characteristics and vulnerabilities (Burke and Tanutama (2019)). Extreme temperatures have been found to reduce output (Burke and Hsiang (2015)), labor productivity (Donadelli et al. (2017)), agricultural production (Winne and Peersman (2019)), food security (Bandara and Cai (2014), Schaub and Finger (2020)), and overall economic growth (Cipollini and Parla (2023), Kim et al. (2021), Kahn et al. (2021), Carleton and Hsiang (2016), Deryugina and Hsiang (2014)). The impact of physical risks deriving from global warming or extreme weather events on prices and inflation is found to vary substantially by type, severity, location, and sector of the economy (Ciccarelli et al. (2023), Canova and Pappa (2021), Baldauf and Lorenzo Garlappi (2020), Parker (2018), Heinen et al. (2018), Cavallo et al. (2014),). Existing evidence predominantly focuses on the supply-side effects of climate change on the economy, while research on demand-side threats is limited. These threats result from disruptions to income, consumption patterns, investments, exports, and changes in consumer behavior, influenced by migration and climate awareness. Climate change intensifies natural disasters and environmental degradation, leading to premature deaths, injuries, displacements, and adverse impacts on well-being and welfare (Ciccarelli and Marotta (2021)).

Given the mounting evidence studying the links between climate change and the economy, our paper aims to develop an empirical framework for assessing the synchronization of movements of temperatures and precipitation’s patterns across countries and regions for the past 120 years.

More in detail, in this study we employ a factor model with stochastic volatility to analyse the extent to which changes in temperature and precipitations exhibit common patterns across various world regions. However, rather than focusing solely on the synchronicity
of temperatures and precipitation, our novel approach isolates the common movement in these climate variables that is shared by all countries in the sample. This framework provides two essential insights: firstly, it allows us to quantify the extent of the increase in global temperatures, providing a comprehensive measure of the global warming phenomenon. Secondly, it offers a unique measure of how each country’s temperatures align with this common global movement, which translates into a robust indicator of exposure to global warming. This dual aspect of our framework enables a more nuanced understanding of countries’ vulnerability to climate risks and provides valuable information for policymakers in crafting effective adaptation and mitigation strategies.

Measuring countries’ vulnerability to global warming holds significant importance for addressing the challenges posed by climate change. It allows for the identification of regions and nations at higher risk of adverse impacts, such as extreme temperatures and natural disasters, enabling policymakers to prioritize resources and implement targeted measures to build resilience. Understanding vulnerability provides insights into the potential economic consequences of global warming, helping countries prepare for challenges like reduced agricultural productivity, increased healthcare costs, and disruptions to infrastructure. Additionally, it aids in international climate negotiations and the allocation of climate finance, ensuring equitable support for highly vulnerable nations. By tailoring climate policies to specific needs, measuring vulnerability contributes to sustainable development goals and fosters climate resilience, ensuring no one is left behind in the face of climate change.

Our findings reveal that a common factor explains a significant portion of the temperature variance in major regions globally, with the largest contribution observed in sub-Saharan Africa, Latin America, and Asia. Furthermore, this common factor accounts for the overall increase in temperature levels across these regions. We also observe that countries more susceptible to common temperature movements tend to have lower GDP per capita, a higher share of agriculture and to a lower extent industry in GDP, and higher average temperatures. On the other hand, the co-movement of precipitation is more localized and less evident.

Moreover, to track changes in climate conditions over time and regions, macroeconomic studies often make use of average temperatures, temperature anomalies or composite indexes using both temperatures and precipitations. However, these measures may face challenges in discerning the specific effects of climate change from other factors. In contrast, our proposed measure offers a more robust isolation of global warming’s impact on temperature and precipitation changes, providing a comprehensive assessment of coun-
tries’ vulnerability to climate risks. Furthermore, our exposure measure is aligned with the ND Gain Index\(^1\), showing a positive correlation with their vulnerability index and a negative correlation with their readiness index, highlighting its relevance in climate resilience policy decision-making.

The rest of the paper is structured as follows: Section 2 of this paper provides a detailed description of the model used and the dataset employed in our analysis. In Section 3, we present and discuss the results obtained from our empirical investigation.

2 Empirical Model and Data

2.1 Empirical model

We assume that the average annual temperature \((T_{it})\) and average annual precipitation \((P_{it})\) data are described by unobserved components that are common across countries or regions. We model these features using a dynamic factor model that allows for heteroscedastic disturbances.

The series in our panel are described by the following observation equation:

\[
\begin{pmatrix}
T_{it} \\
P_{it}
\end{pmatrix} = \begin{pmatrix}
B^W_i \\
0
\end{pmatrix} \begin{pmatrix}
F^W_t \\
f^W_t
\end{pmatrix} + \begin{pmatrix}
B^R_i \\
0
\end{pmatrix} \begin{pmatrix}
F^R_t \\
f^R_t
\end{pmatrix} + \begin{pmatrix}
v_{it} \\
e_{it}
\end{pmatrix}
\]

where \(F^W_t\) and \(f^W_t\) denote a set of \(K\) factors that are common across all countries with associated factor loadings \(B^W_i\) and \(\beta^W_i\). \(F^W_t\) represent the ‘world’ factor for temperature while \(f^W_t\) is the counterpart for precipitation. Region-specific factors are denoted by the matrices \(F^R_t\) and \(f^R_t\) with factor loadings denoted by the \(1 \times K\) vectors \(B^R_i\) and \(\beta^R_i\).

These factors are distinct from the world factors as they only load on the data for the \(rth\) region. The idiosyncratic components in \(T_{it}\) \((P_{it})\) is captured by \(v_{it}\) \((e_{it})\) for \(i = 1, 2, ..., M\).

The world and regional factors are assumed to follow a VAR(2) process:

\[
Z_t = c + \sum_{j=1}^{2} b_j Z_{t-j} + E_t
\]

\(^1\)The ND-GAIN Index is an initiative developed by the Notre Dame Global Adaptation Institute (GAIN) that assesses and ranks countries based on their vulnerability to climate change and their readiness to adapt and respond to its impacts.
where \(\underbrace{Z_t}_{N \times 1} = (F_t^W, f_t^W, F_t^R, f_t^R) \) The idiosyncratic components are assumed to follow AR(1) processes:

\[
\begin{pmatrix}
v_{it} \\
e_{it}
\end{pmatrix} = \begin{pmatrix}
\rho_i & 0 \\
0 & p_i
\end{pmatrix} \begin{pmatrix}
v_{it-1} \\
e_{it-1}
\end{pmatrix} + \begin{pmatrix}
\epsilon_{it} \\
\eta_{it}
\end{pmatrix}
\]

(3)

We allow the disturbances of the model to be heteroscedastic. The shocks \(\Upsilon_{it} = \begin{pmatrix} \epsilon_{it} \\ \eta_{it} \end{pmatrix} \) are assumed to have the following distribution: \(\Upsilon_{it} \sim N(0, \sigma_{it}) \). The variance \(\sigma_{it}^2 \) is allowed to evolve over time:

\[
\ln \sigma_{it}^2 = \tilde{c}_i + \tilde{d}_i \ln \sigma_{it-1}^2 + g_i v_{it}
\]

(4)

As discussed below, the covariance matrix of \(E_t \) is assumed to be diagonal for the purpose of identification. Each element of \(E_t \) is distributed normally: \(E_{kt} \sim N(0, h_{kt}) \) for \(k = 1, \ldots, N \). The stochastic volatilities \(h_{kt} \) evolve as AR processes:

\[
\ln h_{kt} = \tilde{c}_k + \tilde{D}_k \ln h_{kt-1} + d_k u_{kt}
\]

(5)

2.2 Identification and estimation

Without additional assumptions, the model in equations 1 and 2 suffers from rotational indeterminacy. To identify the factors and factor loadings, we follow Bai and Wang (2015) and impose the following identifying restrictions: (i) The covariance matrix of \(E_t \) is assumed to be diagonal. (ii) The top \(K \times K \) block of the factor loading matrices \(\beta \) and \(B \) are assumed to be lower triangular with ones on the main diagonal.

As described in detail in the technical appendix, the model is estimated using a Gibbs sampling algorithm. The algorithm samples from the following conditional posterior distributions in each iteration:

1. Factors: Conditional on the stochastic volatilities, the parameters of the observation and transition equations, the model has a linear, Gaussian state-space representation. The algorithm of Carter and Kohn (2004) is used to sample from the conditional posterior distribution of the factors.

2. Stochastic volatilities: The stochastic volatilities \(\sigma_{jt}^2 \) and \(h_{kt} \) are drawn from their

2 As shown in the Appendix, our results are not sensitive to using alternative lag lengths.

3 We show in the technical appendix that an extended version of the model that features non-normal disturbances produces similar results to the benchmark case.
conditional posteriors using a particle Gibbs sampler with ancestor sampling (see Lindsten et al. (2014)).

3. Factor loadings: The observation equation is a Bayesian regression with known form of heteroscedasticity. After a GLS transformation, the conditional posterior is normal with known moments.

4. Parameters of the transition equations. Conditional on the factors and the idiosyncratic components, the model collapses to the VAR in equations 2 and the AR models in equation 3. Conditional on the time-varying volatility of the residuals, the conditional posteriors of the coefficients are normal. The transition equations 4 and 5 are Bayesian linear regressions and the conditional posterior of the coefficients and the error variance is normal and inverse Gamma, respectively.

We use 21,000 iterations saving every 5th of the last 20,000 for inference. We use the saved parameter draws to calculate the contributions of the world and country factors to the level and variance of the climate variables. The decomposition of the level follows from the observation equation 1 where the contributions from the world and regional factors are provided by the ‘fitted values’ \(\hat{\Phi}_i^W (\hat{F}_i^W) \) and \(\hat{\Phi}_i^R (\hat{F}_i^R) \) where \(\hat{\Phi}_i^J = \begin{pmatrix} B_i^J & 0 \\ 0 & \beta_i^J \end{pmatrix} \) and \(\hat{F}_i^J = \begin{pmatrix} F_i^J \\ f_i^J \end{pmatrix} \) for \(J = W, R \). The variance of \(X_{it} \) is defined as:

\[
\text{var} (X_{it}) = (\hat{\Phi}_i^W)^T \hat{\Theta}^W (\hat{\Phi}_i^W)' + (\hat{\Phi}_i^R)^T \hat{\Theta}^R (\hat{\Phi}_i^R)' + \text{var} (V_{it})
\]

(6)

where \(\hat{\Theta}^J = \text{diag} (\text{var} (\hat{F}_i^J)) \) and \(V_{it} = \begin{pmatrix} v_{it} \\ e_{it} \end{pmatrix} \). The variance terms \(\hat{\Theta}^J \) on the RHS of equation 6 can be calculated by applying the standard VAR formula for the unconditional variance at each point in time, while \(\text{var} (V_{it}) = \frac{(\sigma_i^2)}{1-\rho_i^2} \).

2.3 Data

For each country, we collect data on temperatures and precipitations. The data is obtained from the University of East Anglia Climate Research Unit’s (CRU) high-resolution data sets. The data set includes annual series, spatially averaged over individual countries. Temperatures are expressed in Centigrade while precipitations in millimetres per year. Overall our sample includes 166 countries. The time series spans from 1900 to 2020. We use the first 20 years of the sample to calibrate the priors and obtain initial values.
3 Results

3.1 Factors

Figure 1 shows the posterior estimates of the two world factors. The temperature factor fluctuates at about 18°C until 1980. However, the temperature factor shows a marked increase after this date reaching 19°C at the end of the sample. This result provides strong evidence that an increase in temperatures is a global phenomenon. In contrast to the temperature factor, the world precipitation factor shows a modest decline in the post-1970 period.

Figures 2 shows the evolution of average temperatures in the different regions along with the ‘fitted values’ $\hat{X}_w^W = B_w^W F_T^w$ and $\hat{X}_r^R = B_r^R F_T^r$, respectively. Average temperatures have increased in all regions and the world factor accounts for the bulk of this increase. In Sub-Saharan Africa, Latin America and Asia, the predicted temperature due to the world factor tracks the actual temperature almost exactly and the prediction due to the regional factor is largely flat. For the remaining regions, the regional factors capture some of the large movements in temperature but the post-1980 warming is explained largely by the world factor.

There is some evidence that higher frequency movements in precipitation in the Middle East and North Africa, Europe, North America, and Asia are region specific with the predicted value due to the regional factor moving in line with the actual data. It is interesting to note that the global factor is important for Sub-Saharan Africa and explains the sharp decline in precipitation after the mid-1970s.

3.2 Contribution to climate fluctuations

As noted above, the model allows a decomposition of the variance of temperature and precipitation into contributions from the world and regional factors. The contributions of the world factor to temperature volatility, for example, provide a measure of exposure and vulnerability of countries to the rise in temperature documented above.

The heat map in Figure 4 shows that the contribution of the world factor to temperature fluctuations is large with a cross-country average of 52 percent. The role of the world factor is especially important in Sub-Saharan Africa, Latin America and Asia with impact of the world factor exceeding 80 percent— the top five countries in terms of contributions of this factor are Saint Vincent and the Grenadines, Venezuela, Trinidad and Tobago, Sri Lanka and Tanzania. In contrast, countries such as Sweden, Finland and Norway are largely unaffected by the common developments in temperature. It is interesting to
note that some large industrial countries are highly vulnerable to common temperature developments. For example, the contribution of this factor to temperature fluctuations in the United States and China is estimated to be 60 percent and 66 percent, respectively. Figure A.1 in Appendix A shows that the regional factor makes a modest contribution to temperature variance, explaining, on average, 20 percent of fluctuations. This factor is important for some countries in Western and Eastern Europe— it contributes about 60 percent to the volatility of temperature in Denmark, Slovakia, Poland and the Netherlands. The contribution of the global factor to precipitation volatility is small (8 percent on average), indicating that there is limited co-movement in this variable over time. The effect of the factor is largest in Sub-Saharan Africa and Latin America and the Caribbean. However, in absolute terms, the contribution of this factor remains small. The regional factor is somewhat more important for precipitation (see Figure A.2 in the appendix) with an average contribution of 16 percent. Countries such as Belgium, Netherlands, Luxembourg and Germany in Western Europe and Jordan and Israel in the Middle East are highly exposed to this factor with 70 to 80 percent of fluctuations in precipitation explained by regional co-movement.

3.2.1 Vulnerability and country characteristics

Why are some countries more exposed to the global temperature factor? We provide some tentative results on this issue by performing the following correlation analysis to explore the relationships between economic, energy and development indicators and their associations with the exposure to the global temperature factor.\footnote{The contributions of the world factor is significantly and positively correlated with the University of Notre Dame ND-GAIN index of climate vulnerability and negatively correlated with their readiness index. The correlation coefficient between the two is 0.39 and -0.43 for vulnerability and readiness respectively with p-values close to zero.}

The findings, described by the heat map in Figure 6 reveal important insights into these associations. Overall, the results indicate that countries with higher GDP per capita tend to have lower exposure to global temperature changes. A positive significant correlation is observed between the share of agriculture (0.32) over GDP and the contribution of the world temperature factor to temperature suggesting that countries with a larger propor-

\footnote{The variables included in the analysis are: GDP per capita, Share of agriculture, industry, service and manufacturing in GDP, Energy use (kg of oil equivalent per capita), CO2 emission intensity (kg per 2015 US$ of GDP), Fossil fuel energy consumption (% of total), Life expectancy (years), School enrollment (secondary, % children of school age), Urban population (% of total population), the University of Notre Dame index of climate readiness, the University of Notre Dame index of climate vulnerability, Average temperature and Average precipitation. Indicators are averaged over the available time-series 1950-2006. The variables used in this analysis were obtained from the World Bank Development Indicators database.}
tion of their economies in this sector may experience slightly higher exposure to global temperature changes.

The observed correlation can be attributed to several factors. Firstly, countries with higher GDP per capita often have more resources and technological capabilities to adapt and mitigate the effects of climate change. They may have better infrastructure, healthcare systems, and access to resources that enable them to implement effective measures to cope with rising temperatures. These countries are more likely to invest in climate change adaptation strategies, such as improved water management systems, energy-efficient technologies, and early warning systems, which can help mitigate the adverse impacts of temperature changes.

Secondly, higher GDP per capita is often associated with greater economic diversification and a lower dependency on climate-sensitive sectors, such as agriculture. Countries with a larger share of their economies in agriculture tend to be more susceptible to climate variations, as agricultural productivity is highly dependent on weather conditions. In contrast, countries with more diversified economies, including a higher share of services, are less reliant on climate-sensitive sectors and therefore exhibit lower exposure to global temperature changes. It is important to note that while the correlation between GDP per capita and exposure to global temperature changes is observed, it does not necessarily imply causation. Other factors, such as historical development trajectories, governance structures, and geographical location, may also play a role in shaping a country’s vulnerability and exposure to climate change. Additionally, the specific policies and measures implemented by each country to address climate change can further influence their exposure levels.

Moreover, higher energy consumption per capita is associated with lower exposure to global temperature changes, as indicated by the negative correlation (-0.18) between energy use (kg of oil equivalent per capita) and the exposure to the global temperature factor. Furthermore, lower emissions intensity (-0.13) and a lower proportion of energy derived from fossil fuels (-0.23) are correlated with slightly higher exposure to global temperature changes, as indicated by the negative correlations between emissions intensity and fossil fuel intensity with exposure to the global temperature factor. Higher energy consumption per capita is associated with lower exposure to global temperature changes because countries with higher energy consumption tend to have more developed and industrialized economies. These countries typically have greater resources and capabilities to invest in technologies and infrastructure that can help mitigate the effects of rising temperatures. They may have access to cleaner and more efficient energy sources, advanced manufacturing processes, and better energy management practices, which can reduce their overall
vulnerability to global temperature changes. Socioeconomic factors also play a role, with countries having higher life expectancy (-0.39) and higher secondary school enrollment rates (-0.44) being associated with lower exposure to global temperature changes. Additionally, it is also negatively correlated with the urbanization rate (-0.40), suggesting that countries with higher urbanization rates tend to have lower exposure to global temperature changes.

Two additional variables, readiness and vulnerability demonstrate significant associations with the exposure to the global temperature factor. Readiness exhibits a negative correlation (-0.43), indicating that countries with higher readiness levels tend to have lower exposure to global temperature changes. This suggests that countries with well-developed strategies, infrastructure, and resources for addressing climate change may be better equipped to mitigate the impacts of rising temperatures. On the other hand, vulnerability shows a positive correlation (0.39) suggesting that countries with higher vulnerability levels, encompassing factors such as exposure, sensitivity, and adaptive capacity, may experience greater exposure to global temperature changes and associated risks. Furthermore, results confirm that higher average temperatures and precipitations are associated with increased exposure to global temperature changes. These findings provide valuable insights into the relationships between these country characteristics and the distribution of countries’ exposure to the global temperature factor. However, it is important to note that correlation does not imply causation. Further analysis, such as regression modeling, is necessary to establish the significance and causal relationships between these variables and the exposure to global temperature changes.

3.2.2 Robustness

We carry out three robustness checks that are described in detail in Appendix A.

1. Fat tails: The benchmark model assumes Gaussian disturbances. First, we relax this assumption and model the idiosyncratic residuals and shocks to the transition equation for the factors using a Student-t distribution with 10 degrees of freedom. This version of the model produces factors and variance decomposition that is similar to benchmark.

2. Two factors: We extend the model and increase in the number of world and regional factors to 2. As shown in Appendix A the first temperature and precipitation factors are similar to the benchmark case. Our key result regarding the importance of the world factor for temperature volatility is preserved. However, as the additional
common factors capture higher-frequency fluctuations in the climate data, the share of variation of temperature explained by the global factors is higher than in the benchmark case.

3. Longer lags: The appendix also shows that a version of the benchmark model with additional lags produces results that are very similar to the benchmark case.

4 Conclusions

In this study, we contribute to the growing literature exploring the link between climate change and macroeconomic fluctuations by examining the synchronization of temperature and precipitation changes across countries and regions. Our empirical analysis, based on a factor model with stochastic volatility, has yielded several key findings. First, we observed a significant increase in global temperatures after 1980, indicating that rising temperatures are indeed a global phenomenon. The world factor accounted for the majority of this temperature increase, particularly in sub-Saharan Africa, Latin America, and Asia. In these regions, the predicted temperature due to the world factor closely tracked the actual temperature, while the regional factor had a minimal impact. In other regions, the regional factors captured some temperature movements, but the post-1980 warming was primarily explained by the world factor. On the other hand, precipitation fluctuations exhibited more localized patterns, with limited evidence of co-movement across regions over time. However, the global factor did play a role in explaining the sharp decline in precipitation after the mid-1970s in Sub-Saharan Africa. Overall, the contribution of the global factor to precipitation volatility was relatively small compared to that of temperature.

The decomposition of temperature and precipitation variances allowed us to assess the contribution of the world and regional factors to climate fluctuations. We found that the world factor accounted for a significant proportion (52 %) of temperature fluctuations globally, with higher contributions in regions such as Sub-Saharan Africa, Latin America, and Asia. Countries with lower GDP per capita and a higher share of agriculture and to a lower extent industry in their economies tended to exhibit greater exposure to global temperature changes. Additionally, higher energy consumption per capita was associated with lower exposure to global temperature fluctuations, while lower emissions intensity and a lower proportion of energy derived from fossil fuels were correlated with slightly higher exposure.

Socioeconomic factors also played a role, with countries experiencing lower exposure to global temperature changes having higher life expectancy, higher secondary school en-
rollment rates, and lower urbanization rates. Furthermore, countries with higher readiness levels demonstrated lower exposure, indicating that well-developed strategies and resources for addressing climate change can help mitigate the impacts of rising temperatures. Conversely, countries with higher vulnerability levels showed greater exposure to global temperature changes, emphasizing the need for adaptive capacity and resilience-building measures.

In conclusion, our study highlights the global nature of temperature increases and the varying degrees of synchronization in precipitation fluctuations across regions. The findings provide valuable insights into the vulnerability and exposure of countries to climate change, helping policymakers better understand the implications of climate risks on economic stability. Further research, including regression modeling and in-depth analysis of causality, is needed to deepen our understanding of the complex relationships between climate variables and macroeconomic outcomes. Ultimately, addressing climate change and building resilience will require concerted efforts at both the global and regional levels, with targeted strategies tailored to the specific challenges faced by different countries and regions.
References

Canova, Fabio and Evi Pappa, 2021, Costly disasters and the role of fiscal policy, *mimeo*.

Ciccarelli, Matteo, Friderike Kuik and Catalina Martínez Hernández, 2023, The asymmetric effects of weather shocks on euro area inflation.

Kahn, Matthew E, Kamiar Mohaddes, Ryan NC Ng, M Hashem Pesaran, Mehdi Raissi and Jui-Chung Yang, 2021, Long-term macroeconomic effects of climate change: A cross-country analysis, Energy Economics 104, 105624.

Kim, Hee Soo, Christian Matthes and Toan Phan, 2021, Extreme weather and the macroeconomy, Available at SSRN 3918533.

Koop, Gary, 2003, Bayesian Econometrics, Wiley.

Winne, Jasmien De and Gert Peersman, 2019, The Impact of Food Prices on Conflict Revisited, *Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 19/979*, Ghent University, Faculty of Economics and Business Administration.
Figure 1: World factors

Estimated world factors for temperature (left axis) and precipitation (right axis). The shaded areas represent the 95 percent error band.
Figure 2: World and regional factors for temperature

Estimated world and regional factors for temperature and average regional temperature
Estimated world and regional factors for precipitation and average regional precipitation
Figure 4: Contribution of the world factor to temperature volatility. Average across time

Darker colours the heat map indicates a larger contribution
Figure 5: Contribution of the world factor to precipitation volatility. Average across time.

Darker colours the heat map indicates a larger contribution
Figure 6: Vulnerability and country characteristics: correlation heat map

<table>
<thead>
<tr>
<th>Global Temperature Factor</th>
<th>GDP per Capita</th>
<th>Agriculture (% of GDP)</th>
<th>Industry (% of GDP)</th>
<th>Services (% of GDP)</th>
<th>Manufacturing (% of GDP)</th>
<th>Energy Use per Capita (kg oil eq.)</th>
<th>CO2 Emission Intensity (kg/$ GDP)</th>
<th>Fossil Fuel Energy Consumption (%)</th>
<th>Life Expectancy (years)</th>
<th>Secondary School Enrollment (%)</th>
<th>Urban Population (%)</th>
<th>Climate Readiness Index</th>
<th>Climate Vulnerability Index</th>
<th>Average Temperature</th>
<th>Average Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.2</td>
<td>-0.4</td>
<td>-0.6</td>
<td>0.6</td>
<td>-0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>
A Appendix A: Additional Results and Robustness Checks

A.1 Contribution of regional factor to temperature variance

Figure A.1 shows the contribution of the regional factor to temperature volatility while figure A.2 shows the contribution of the regional factor to precipitation volatility. See main text for details.

A.2 Robustness checks

A.2.1 Fat tails

First, we relax the assumption of normal disturbances in the benchmark model. The idiosyncratic components are defined as $\Upsilon_{it} \sim N\left(0, \sigma_{it}^2, \lambda_{it}\right)$. The variance σ_{it}^2 is allowed to evolve slowly over time and follows an AR model as described above. Higher frequency movements in volatility are captured by $\frac{1}{\lambda_{it}}$ that is independent over time. Following Geweke (1993), we assume a Gamma prior for λ_{it} of the form $p(\lambda_{it}) = \prod_{i=1}^{T} \Gamma(1, v_i)$, where $\Gamma(a, b)$ is the gamma density with mean a and degrees of freedom b. This leads to a scale mixture of normal distributions for Υ_{it} implying that these residuals follow a student’s T density with degrees of freedom v_i and variance σ_{it}^2. The same specification is assumed for the shocks to the transition equation 2. As discussed below, the covariance matrix of E_t is assumed to be diagonal for the purpose of identification. Each element of E_t is distributed normally: $E_{kt} \sim N\left(0, \frac{h_{kt}}{\gamma_{kt}}\right)$ for $k = 1, \ldots, N$. The weights $\frac{1}{\gamma_{kt}}$ capture high frequency movements in volatility. As above, we assume a Gamma prior for γ_{kt}: $p(\gamma_{kt}) = \prod_{i=1}^{T} \Gamma(1, v_j)$. The degrees of freedom parameters ν are set to 10 implying tails that are fatter than the normal density. We add steps in the Gibbs sampler to draw λ_{it} and γ_{kt}. The conditional posterior distribution for this parameter is described in Koop (2003). Figure A.3 shows that the estimated factors are close to the benchmark case. In addition, the variance decomposition has a pattern that is similar to benchmark with the world factor playing a major role in explaining temperature fluctuations.

A.3 Two factors

We extend the benchmark model and add two world and regional factors. The top panels of figure A.4 display the estimated world factors. The first temperature factor displays
the temporal pattern seen in the benchmark case with a sharp increase evident in the post-1980 period. Similarly, the first precipitation factor displays a decline after the mid-1970s. The second temperature and precipitation factors are more volatile and do not have a clear interpretation. In terms of the variance decomposition, the role of the world temperature factors is magnified in this extended model as some of the higher frequency movements in temperature are also explained by the second factor. As in the benchmark case, the regional factor remains important for precipitation volatility.

A.4 Longer Lags

We re-estimate the model using 4 lags in the transition equation for the factors. A.5 shows that the results regarding the factors and variance decomposition are very similar to the benchmark case.

B Gibbs Sampling Algorithm

The empirical model is defined as:

\[
\begin{pmatrix}
T_{it} \\
P_{it}
\end{pmatrix} =
\begin{pmatrix}
B_i^{W,T} & 0 \\
0 & B_i^{W,P}
\end{pmatrix}
\begin{pmatrix}
F_t^{W,T} \\
F_t^{W,P}
\end{pmatrix} +
\begin{pmatrix}
B_i^{R,T} & 0 \\
0 & B_i^{R,P}
\end{pmatrix}
\begin{pmatrix}
F_t^{R,T} \\
F_t^{R,P}
\end{pmatrix} +
\begin{pmatrix}
v_{it} \\
e_{it}
\end{pmatrix}
\]

(7)

where \(T \) denotes temperature series and \(P \) denotes precipitation series. The idiosyncratic components \(u_{it} = \begin{pmatrix} v_{it} \\ e_{it} \end{pmatrix} \) are assumed to follow AR(1) processes:

\[
u_{it} = \rho_i u_{it-1} + \Upsilon_{it}
\]

(8)

The shocks \(\Upsilon_{it} \) are assumed to have the following distribution: \(\Upsilon_{it} \sim N(0, \sigma_{it}) \). The variance \(\sigma_{it}^2 \) is allowed to evolve over time:

\[
\ln \sigma_{it}^2 = \tilde{c}_i + \tilde{d}_i \ln \sigma_{it-1}^2 + g_i v_{it}
\]

(9)

The world and regional factors are assumed to follow a VAR process:

\[
Z_t = c + \sum_{j=1}^{P} b_j Z_{t-j} + E_t
\]

(10)
Where

\[Z_t = \left(F_t^{W,J}, F_t^{R,J} \right) \]

for \(J = [T, P] \) The covariance matrix of \(E_t \) is assumed to be diagonal for the purpose of identification. Each element of \(E_t \) is distributed normally:

\[E_{kt} \sim N(0, h_{kt}) \text{ for } k = 1, \ldots, N. \]

The stochastic volatilities \(h_{kt} \) evolve as random walks:

\[
\ln h_{kt} = \bar{c}_k + \bar{D}_k \ln h_{kt-1} + d_k u_{kt}
\]

(11)

\section*{B.1 Priors}

We use the following prior distributions

1. The factor loadings are denoted by \(b_i = [B_i^{W,J}, B_i^{R,J}] \) for for \(J = [T, P] \). The prior is normal: \(P(b_i) \sim N(\tilde{b}_i, \Sigma_b) \) where \(\tilde{b}_i \) denotes principal component estimates of factor loadings and \(\Sigma_b \) is a diagonal matrix with diagonal elements equal to 0.1.

2. The prior for the persistence of the idiosyncratic components \(\rho_i \) is normal: \(N(\rho_0, \Sigma_p) \) where \(\rho_0 = 0.5 \) and \(\Sigma_p = 0.01 \)

3. The prior for the coefficients \(\tilde{A}_i = [\tilde{c}_i, \tilde{d}_i] \) is normal with mean \(A_0 = [0, 0.95] \) and variance \(\Sigma_A \) where \(\Sigma_A \) is a diagonal matrix with 0.1 on the main diagonal.

4. The prior for \(g_i \) is inverse Gamma with scale \(g_0 = 0.001 \) and degrees of freedom \(T_0 = 1 \)

5. We use a Minnesota type prior (see Bańbura \textit{et al.} (2010)) for the coefficients of the VAR in equation 10 which are denoted by \(\tilde{\beta} \) in vectorised form. The tightness parameter is set to 0.1.

6. The prior for \(\tilde{A}_k = [\tilde{c}_i, \tilde{d}_i] \) is normal with mean \(\tilde{A}_0 = [0, 0.95] \) and with variance \(\tilde{\Sigma}_A \), a diagonal matrix with diagonal elements equal to 0.1.

7. The prior for \(d_k \) is inverse Gamma with scale \(d_0 = 0.001 \) and degrees of freedom \(T_{d,0} = 1 \)

The Gibbs sampling algorithm draws from the following conditional posterior distributions in each iteration (\(\Psi \) denotes all other parameters):

1. Factor loadings \(G(b_i|\Psi) \). For each series \(y_{it} \) the model can be written as:

\[
y_{it} = b_i z_t + u_{it}
\]

(12)

\[
u_{it} = \rho_i u_{it-1} + \Upsilon_{it}
\]

(13)

\[
var(\Upsilon_{it}) = \sigma_{it}
\]

(14)
where $z_t = [F_t^{W,J}, F_t^{R,J}]$ for $J = T$ or $J = P$. A GLS transformation can be used to remove the autocorrelation and heteroscedasticity. Define $y_{it}^* = \frac{y_{it} - \rho y_{i,t-1}}{\sigma_{it}}$ and $x_{it}^* = \frac{x_{it} - \rho x_{i,t-1}}{\sigma_{it}}$. The conditional posterior is normal with variance $V = \left(\Sigma_b^{-1} + x_{it}^* x_{it}^*\right)^{-1}$ and mean $M = V \left(\Sigma_b^{-1} \bar{b}_i + x_{it}^* y_{it}^*\right)$.

2. Persistence of idiosyncratic components $G(\rho_i|\Psi)$. Conditional on the remaining parameters, the idiosyncratic components can be written as:

$$
u_{it} = \rho_{it} \nu_{it-1} + \nu_{it}$$ \hspace{1cm} (15)
$$\text{var}(\nu_{it}) = \sigma_{it}$$ \hspace{1cm} (16)

A GLS transformation can be used to remove heteroscedasticity. Define $y_{it}^* = \frac{\nu_{it}}{\sigma_{it}}$ and $x_{it}^* = \frac{\nu_{i,t-1}}{\sigma_{it}}$. The conditional posterior is normal with mean and variance defined as in Step 1 above.

3. Stochastic volatility of idiosyncratic components $G(\sigma_{it}|\Psi)$. Conditional on the remaining parameters, a non-linear state-space model applies to each idiosyncratic component:

$$u_{it} = \rho_i u_{it-1} + \nu_{it}$$ \hspace{1cm} (17)
$$\text{var}(\nu_{it}) = \sigma_{it}$$ \hspace{1cm} (18)
$$\ln \sigma_{it}^2 = \bar{c}_i + \bar{d}_i \ln \sigma_{it-1}^2 + g_i v_{it}$$ \hspace{1cm} (19)

We draw σ_{it} from the conditional posterior using the particle Gibbs sampler with ancestor sampling introduced by Lindsten et al. (2014).

4. $G(g_i|\Psi)$. This conditional posterior is inverse Gamma with scale parameter $g_0 + \left(\ln \sigma_{it}^2 - \bar{c}_i - \bar{d}_i \ln \sigma_{it-1}^2\right)$ and degrees of freedom $T_i + T_0$ where T_i denotes the time-series for the ith cross-section.

5. $G(\tilde{A}_i|\Psi)$. The transition equation for the stochastic volatility is a linear regression model. Conditional on $ln(\sigma_{it}^2, g_i)$, the conditional posterior is normal. Let $y = ln(\sigma_{it}^2$ and $x = [1, ln(\sigma_{it-1}^2)]$. Then the variance of the conditional posterior is defined as:

$$V = \left(\Sigma_A^{-1} + \frac{1}{g_i} x' x\right)^{-1}$$ and mean $M = V \left(\Sigma_A^{-1} A_0 + \frac{1}{g_i} x' y\right)$.

6. VAR coefficients $G(\beta_t|\Psi)$. Conditional on the remaining parameters is a VAR with heteroscedastic disturbances. As we assume that the covariance matrix of E_t is diagonal, one can draw from the conditional posterior of the coefficients equation by
equation. The conditional posterior is normal after a GLS transformation. Carriero et al. (2022) describe an efficient algorithm to implement this draw and we follow their approach.

7. Stochastic volatility $G(h_k|\Psi)$. The transition equations can be cast as a non-linear state-space system:

\begin{align}
Z_t &= c + \sum_{j=1}^{P} b_j Z_{t-j} + E_t \\
\ln h_{kt} &= \bar{c}_k + \bar{D}_k \ln h_{kt-1} + d_k u_{kt}
\end{align}

As in step 3, we employ a particle Gibbs sampler to draw h_{kt} from the conditional posterior distribution.

8. $G(d_k|\Psi)$. This step is identical to Step 4.

9. $G(\bar{A}_k|\Psi)$. This step is identical to Step 5.
Figure A.1: Contribution of the regional factor to temperature volatility

Darker colours the heat map indicates a larger contribution
Figure A.2: Contribution of the regional factor to precipitation volatility

Darker colours the heat map indicates a larger contribution
Figure A.3: Robustness: Fat tails

World temperature and precipitation factors

Contributions to Temperature volatility

Contributions to Precipitation volatility
Figure A.4: Robustness: Two factors

First world temperature and precipitation factors

Second world temperature and precipitation factors

Contributions to Temperature volatility

Contributions to Precipitation volatility

World factor
Regional factor
Figure A.5: Robustness: Longer lags